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Complexity Classes

® L = Deterministic Logspace

1 Input:

2 Work: ”

3 Output: ”

1 |ofof1]o0
<+ counts as space
® NL = Non-deterministic Logspace
4 Certificate: ”1 0Oj1]11]0
e BPL = Bounded-error Probabilistic Logspace
4" Coins: mO 0Ol1]0(1

® BQL = Bounded-error Quantum Logspace
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@® Graph Connectivity
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USTCON

1 . . .
Pij) = E0) if {i,j} € E,
0 otherwise.

= pe = Ptug

0O Vi |\(P)| <1
d! stationary 7 : Pm =,
[A2] < 1.

= Pt =1-|m) (x| + > AF[v) (.
Jj=>2

N = )
In fact 7(7) 2;d0)’
§:=1— )| >1/n%

® G connected & non-bip = {
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USTCON

BPL-Procedure for USTCON
@ Do many Random Walks

BQL-Procedure for USTCON

©® Ta-Shma [1]: In BQL can do QPE(e”) on random |v),
= estimate dim(ker(I — P)) = #CCs
® Does dim change if we add edge {s, t}?
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Problematic example

(5 . on1
2 @ g

® In general § := 1 — s exp-small
= Estimating dim(ker(/ — P)) doesn’t work anymore @

Theorem (Ta-Shma [1])

If A poly-conditioned, i.e. poly(n) > sl(A) > ... > sp(A) > ﬁ(n),

then can approximate A~! up to 5o 1 poly(n) Accuracy in BQL.

Roman Edenhofer, edenhoferQ@irif.fr Algorithms and Complexity, IRIF

Counting Paths in Quantum Logspace



Graph Connectivity
0000e00000000

Ta-Shma for STCON

If #paths(/, ) < poly(n) Vi,j, then can decide STCON in BQL.

Consider £ := | — A for adjacency matrix A of a DAG.
= L 1=14+A+ ..+ A" 1 because A" =0,
= L7Y(i,j) = #paths(i, ).
L||so < pol ,
Hence, L is poly-conditioned iff ! Ul < poly(n)
1£7loo < poly(n),
L)=||L]]2 < L||ocos
pecause {10 = IIEll < VALl
sn(£) = 1/[I£7 2 = 1/v/AllL£7H |oo-
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Example 1: Random Walk fails, #Paths works.
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Unambiguity & Fewness

® N(i,j) := #paths from node i to j
¢ Following [2], a graph is called ...

®

unambiguous reach-unambiguous strongly unambiguous
= N(s,t) <1 = Vi N(s,j) <1 = VijoN(i,j) <1

Roman Edenhofer, edenhoferQ@irif.fr Algorithms and Complexity, IRIF

Counting Paths in Quantum Logspace



Graph Connectivity
0000000800000

Unambiguity & Fewness

® N(i,j) := #paths from node i to j
¢ Following [2], a graph is called ...

unambiguous reach-unambiguous strongly unambiguous
= N(s,t) <1 = V)i N(s,j) <1 = Vi N(iL,j) <1
few unamb. reach-few strongly-few
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Unambiguity & Fewness

StFewlL — ReachFewlL

— ~
L — StUL FewL — NL
\ /

ReachUL — UL

* 1998 Allender & Lange [3]: ReachUL C DSPACE(ji2% )
® 2012 Garvin, Stolee, Tewari & Vinodchandran [4]:

ReachUL = ReachFewlL
® Previous slide: StFewL C BQL
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Unambiguity & Fewness

ReachFewlL
L —StUL —StFewL - _ oo .y — UL —FewL —NL
\ N
BQL DSPACE( ")

e 1998 Allender & Lange [3]: ReachUL C DSPACE(QZ?;"J

® 2012 Garvin, Stolee, Tewari & Vinodchandran [4]:
ReachUL = ReachFewlL

® Previous slide: StFewL C BQL
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Can we go further?

If #paths(s, i), #paths(i, t) < poly(n) Vi, then STCON € BQL.

Consider again £ :=1— A=}, s;|u;) (v
= L70= > s (gl + Y s v ()]

i1 >pc—1
si<k SiZK
N

777 easy by Ta-Shma
Observe [|£7[t) |13 = 35; 5772 (uj|t) [ < poly(n)
| (slv;) | < s - poly(n),
| (ujlt) | < sj - poly(n)
Choose k = poly(n) s.t. Zsj<ﬁ,1 \sj_l (slvj) (ujlty | <1/3. O

= |57 (slv;) (uj|t) | < sj - poly(n)

V.
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Open Questions

® Can we obtain ReachFewL C BQL?
® What info can we get from ill-conditioned part?

S R~

w3 g 71wl
R = = }oo1]

1 N(Srt) ?

Can we detect if S NG > 1/poly(n)?
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© Is there a natural BQL-complete graph problem? What's the
relationship with #L, GapL?

pc-MATPOW( is BQL-complete,
{pc—MATPOWN = counting paths in StFew-graphs
Conjecture: pc—MATPOW{i;O} is BQL-complete.
O Use QSVT instead of Ta-Shma
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