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Introduction

We consider the online Dial-a-Ride Problem where objects are to be transported
between points in a metric space in the shortest possible completion time. In con-
trast to the offline case, these transportation requests arrive over time and can only
be served after they are released. One main way to measure the quality of an online
algorithm is via competitive analysis where we determine its competitive ratio, i.e.,
the smallest ratio we can guarantee for all possible requests between the completion
time of the online algorithm and the completion time of the optimal (offline) solu-
tion which knows all requests in advance. Different competitive ratios are known
for different variations of the problem.

This thesis is organized as follows: In the first chapter we formally define the
problem with some of its variations and introduce notation. In the second chapter
we give an overview of the state of the art of currently best known competitive ratios.
In the third chapter, the main part of this thesis, we present three algorithms for the
preemptive and uncapacitated open and closed case: ABORT, ABORT-AND-WAIT
(AAW) and ABORT-OR-REPLAN (AOR). They are all based on the approach
that whenever new requests arrive the server tries to abort its current schedule and
return to its starting position to begin a new optimal schedule for the remaining
requests from there. Table 1 gives an overview of the competitive ratios of the first
strategy ABORT. The second strategy AAW extends ABORT by a waiting routine
which improves its competitiveness. In Bjelde et al. [1] a similar algorithm has
already been investigated for the open case on the real line. We slightly changed
the algorithm such that it also works efficiently on general metric spaces for the
open and closed case. Table 2 contains the competitive ratios of AAW. All of them

ABORT open closed

ge
ne

ra
l

uncapacitated (c=∞) 3 [Thm 3.3] 2.5 [Thm 3.5]
preemptive 3 [Thm 3.2] 2.5 [Thm 3.4]

Table 1: Competitive ratios of the ABORT-strategy.
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ABORT-AND-WAIT open closed

ge
ne

ra
l

uncapacitated (c=∞) 2.4142 [Thm 3.7] 2 [Thm 3.10]
preemptive 2.4142 [Thm 3.6] 2 [Thm 3.9]

Table 2: Competitive ratios of the AAW-strategy.

match the currently best known upper bounds and the preemptive open case even
improves the upper bound of 2.6180 from Lipmann [2, Thm 4.9]. The final algorithm
we present is AOR for the uncapacitated closed case on the halfline. This algorithm
further improves AAW in this setting. A current schedule is not always aborted but
instead sometimes the server continues to serve unserved requests starting from its
current position instead. For the closed case on the halfline this algorithm improves
the best known upper bound of 2 given by Ascheuer et al. [3, Thm 6] for general
metric spaces to

(
3 +
√
2/2
)
/2 ≈ 1.8536 [Thm 3.12].
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Chapter 1

Preliminaries

An instance of the basic online Dial-a-Ride problem consists of a metric space
M = (X, d) with a distinguished origin 0 ∈ X and a set of requests σ = {σ1, ..., σn}.
Each request is of the form σi = (ai, bi; ti) where ai, bi ∈ M are the source and
destination of the request, respectively, and ti ≥ 0 is the release time of the request.
The requests are to be served by a single server starting at the origin in the shortest
possible completion time, i.e., the time the last request is served.

We distinguish multiple versions of the problem. First of all, we give special
attention to the case where source and destination of each request coincide. This
case yields the traveling salesman problem (TSP). Here, we do not state source and
destination separately for every request but instead write (ai; ti) for requests in σ.
We also look at different capacities c ∈ N∪{∞} which bound the number of requests
the server can carry simultaneously. Here, we further distinguish the preemptive
and non-preemptive case. The former means that requests can be unloaded at any
point of time to be picked up and delivered to their destination at a later time. In
contrast the latter only allows requests to be unloaded once at their destination.
Lastly, we distinguish the closed and the open version. In the closed case the server
must end its tour at the origin and in the open version the server can end at any
position. Other versions of the problem have been investigated but are not treated
in this thesis, e.g. multiple servers by Bonifaci et al. [4] or so called fair adversaries
where the movement of the optimal solution is restricted by Blom et al. [5] and
many more.

We use similar notation as introduced by Bjelde et al. [1] and Ascheuer et al. [3]:

• Let σ≤t denote all unserved requests from σ released up to time t. Similarly,
σ>t (or σ≥t) denotes all requests from σ released after time t (respectively at
or after time t).

3



4 CHAPTER 1. PRELIMINARIES

• Let OPT(σ) be the time it takes an optimal (offline) solution OPT which
knows all requests in advance to serve every request from a set σ. Similarly
for an online algorithm ALG, we denote by ALG(σ) the time it takes ALG to
serve all requests from σ.

• Let a set of requests σ be fixed. Then L(t, p, R) (respectively L∗(t, p, R))
denotes the length of a shortest possible open (respectively closed) schedule
for R ⊆ σ starting at time t and position p. Note that in the open case for all
0 ≤ t ≤ t′, p, p′ ∈M,R ⊆ R′ ⊆ σ we have

L(t′, p, R) ≤ d(p, p′) + L(t, p′, R′).

The same property holds for L∗(·, ·, ·) in the closed case.

• For a given input, let pALG(t) denote the position of the ALG-server at time t.
Similarly, let pOPT(t) denote the position of the server of an optimal solution
at time t.

• To specify the path of the server we write move(a) for a tour that moves from
the current position to the point a ∈ M in a shortest possible way and we
write waituntil(t′) for the tour that waits at the current position until time t′.
Further the operator ⊕ is used to concatenate multiple tours. For a tour T ,
we write |T | for its length.

We can now formally define what it means for an online algorithm ALG to be
competitive.

Definition 1.1. An online algorithm ALG for Dial-a-Ride is said to be ρ-competitive
if for all possible sets of requests σ we have

ALG(σ) ≤ ρOPT(σ).

The competitive ratio of ALG is the infimum over all ρ ≥ 1 for which ALG is
ρ-competitive.



Chapter 2

State of the Art

In recent works on online Dial-a-Ride the real line and halfline have received con-
siderable attention. Table 2.1 gives an overview of the currently best known lower
and upper bounds for competitive ratios of online Dial-a-Ride with special atten-
tion for these two metric spaces. This thesis will mainly focus on the uncapacitated
and preemptive case. We also consider bounds for the non-preemptive case and the
traveling salesmen problem as some of these carry over to the aformentioned cases.

For online TSP on the line, Bjelde et al. present conclusive results. For the
closed case they present a 1.6404-competitive algorithm (see [1, Thm 3]) matching
the lower bound given by Ausiello et al. (see [6, Thm 3.3]). For the open case they
give a lower bound of 2.0346 (see [1, Thm 4]) and an algorithm matching that bound
(see [1, Thm 10]). For online TSP on the halfline, conclusive bounds are only known
for the closed case. Blom et al. show a lower bound of 1.5 (see [5, Thm 1]) and a
matching algorithm (see [5, Thm 2]). For the open case a lower bound of 1.6272 is
given by Lipmann (see [2, Thm 3.7]).

For non-preemptive Dial-a-Ride on the line and halfline currently unmachted
lower bounds are known. For the closed case on the halfline a lower bound of
1.7071 is presented by Ascheuer et al. (see [3, Thm 2]) and on the line of 1.75 by
Bjelde et al. (see [1, Thm 13]). For the open case on the halfline a lower bound of
1.8968 is given by Lipmann (see [2, Thm 3.14]) and on the line of 2.0585 by Birx
et al. (see [7, Thm 1]). For non-preemptive Dial-a-Ride on general metric spaces,
conclusive bounds are only known for the closed case. Here, Ascheuer et al. present
the SMARTSTART-algorithm (see [3, Thm 6]) which matches the lower bound of 2
given by Ausiello et al. for closed online TSP on general metric spaces (see [6, Thm
3.2]). For the open case on general metric spaces the best known upper bound from
Lipmann is 2.6180 (see [2, Thm 4.9]).
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6 CHAPTER 2. STATE OF THE ART

Conclusive results for preemptive or uncapacitated online Dial-a-Ride are also
only known for the closed case. A close inspection of the proof of SMARTSTART’s
competitiveness from Ascheuer et al. shows that the upper bound of 2 carries over
from the non-preemptive to the preemptive or uncapacitated case on general metric
spaces. This closes the gap between lower and upper bound in these cases as the
lower bound of 2 for closed online TSP from Ausiello et al. trivially carries over as
well. A better upper bound than 2 on the halfline in the uncapacitated closed case is
established in this thesis by AOR with 1.8536 (see [Thm 3.12]). For the preemptive
and uncapacitated open case AAW establishes an upper bound of 2.4142 on general
metric spaces (see [Thm 3.6,3.7]). No better upper bounds are known on the line
or halfline. As mentioned earlier AAW is only a slight variation of an algorithm
originally analyzed by Bjelde et al. for the open case on the line (see [1, Thm 12]).
In a shortly to be published version they even show that their algorithm upholds the
same competitive ratio for the uncapacitated open case on general metric spaces.
Therefore AAW only improves the upper bound in the preemptive open case on
general metric spaces. Here the former best known upper bound was 2.6180 by
Lipmann which carried over from the non-preemptive case (see [2, Thm 4.9]). In
a way this algorithm from Lipmann could even be seen as a natural transfer of
AAW to the non-preemptive setting such that a schedule is only aborted if the
non-preemption-condition allows to do so.
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General Bounds open closed
lower bound upper bound lower bound upper bound

ge
ne

ra
l

non-preemptive
(c <∞)

2.0585 2.6180
[2, Thm 4.9]

2 2
[3, Thm 6]

uncapacitated
(c =∞)

2.0346 2.4142
[1, Thm 12]

2 2
[3, Thm 6]

preemptive 2.0346 2.6180→ 2.4142
[Thm 3.6]

2 2
[3, Thm 6]

TSP 2.0346 2.4142 2
[6, Thm 3.2]

2

lin
e

non-preemptive
(c <∞)

2.0585
[7, Thm 1]

2.6180 1.75
[1, Thm 13]

2

uncapacitated
(c =∞)

2.0346 2.4142 1.6404 2

preemptive 2.0346 2.4142
[1, Thm 12]

1.6404 2

TSP 2.0346
[1, Thm 4]

2.0346
[1, Thm 10]

1.6404
[6, Thm 3.3]

1.6404
[1, Thm 3]

ha
lfl
in
e

non-preemptive
(c <∞)

1.8968
[2, Thm 3.14]

2.6180 1.7071
[3, Thm 2]

2

uncapacitated
(c =∞)

1.6272 2.4142 1.5 2→ 1.8536
[Thm 3.12]

preemptive 1.6272 2.4142 1.5 2

TSP 1.6272
[2, Thm 3.7]

2.0346 1.5
[5, Thm 1]

1.5
[5, Thm 2]

Table 2.1: Overview of the best known bounds for the competitive ratios of online
Dial-a-Ride. Bold results are new from this thesis. Results without reference are
direct consequences from other bounds.



Chapter 3

Algorithms

3.1 Algorithm: ABORT

In this section we consider the ABORT-strategy (Algorithm 1): Whenever new re-
quests are released the server returns to the origin while delivering currently carried
requests or unloading them at their respective sources in the shortest possible way.
Once the server arrives at the origin it starts a new optimal tour for all remaining
requests from there.

We will find that in the preemptive (and uncapacitated) open case this algorithm
is 3-competitive and in the corresponding closed case it is 2.5-competitive.

Algorithm 1: ABORT for Open/Closed Online Dial-a-Ride
this function is called upon receiving a new request
input : unserved requests σ≤t, current server-position pAAW(t)
output: closed tour serving σ≤t
T return ←− shortest possible tour back to the origin unloading every
currently carried request at its respective source or delivering it to its
destination
T new ←− open/closed tour of length L(t, 0, σ≤t) (respectively L∗(t, 0, σ≤t))
starting at 0 and serving σ≤t
return T return ⊕ T new

First, observe the following lemma stating the simple fact that in the preemptive
setting inverting a schedule, i.e., following a schedule back in time, allows to unload
requests at their pickup-positions if they were picked up on the schedule.

Lemma 3.1. In the preemptive setting, suppose at time tstart the server is located
empty at the origin while all requests are located at their respective sources. If the

8



3.1. ALGORITHM: ABORT 9

server follows a schedule S after tstart until time tend, then the inverse schedule S−1

of length |S−1| = |S| =
(
tend − tstart

)
which returns to the origin in the same way

that S has moved out, i.e., for all t ∈
[
tend, tend +

(
tend − tstart

)]
pALG(t) = pALG

(
tend −

(
t− tend

))
,

can return every request carried at time tend at its respective source.

Proof. Clearly, if S−1 is followed after time tend, then the server ends at

pALG
(
tend −

((
tend +

(
tend − tstart

))
− tend

))
= pALG

(
tstart

)
= 0.

Now suppose that at time tend the server is carrying k ≤ c requests.
Let tstart + t1, ..., t

start + tk be the corresponding times when each of the k re-
quests was picked up at its respective source ai (i ∈ {1, ..., k}). At time
tend −

(
(tstart + ti)− tend

)
the server is at position ai again and can unload the cor-

responding request at its source.

3.1.1 ABORT for Open Online Dial-a-Ride

Let us now prove that ABORT is 3-competitive for the preemptive open case.

Theorem 3.2. Algorithm ABORT is 3-competitive for preemptive open online Dial-
a-Ride and the ratio is tight.

Proof. Let tn be the last release time from σ. Further, let tstart denote the last time
the server is located empty at the origin before tn and let ti be the first release
time after tstart. At time ti the server aborts its current schedule and returns to
the origin by a schedule T return. By Lemma 3.1 we know that the inverse tour of
how the server moved after tstart allows to return to the origin and unload every
at ti carried request at its respective source in time (ti − tstart). Thus, we have
|T return| ≤ (ti − tstart) ≤ ti ≤ OPT(σ) where the last inequality holds as OPT must
respect release times. This yields for the completion time of ABORT

ABORT(σ) = ti︸︷︷︸
≤OPT(σ)

+ |T return|︸ ︷︷ ︸
≤OPT(σ)

+L(tn, 0, σ≤tn)︸ ︷︷ ︸
≤OPT(σ)

≤ 3OPT(σ).

The following TSP-instance shows that this ratio is tight even on the halfline
R+

0 (cf. Figure 3.1). Consider σ = {(1; 0), (1; 1 − ε)} with some small ε > 0.
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Right before ABORT is able to serve (1; 0) at time 1 − ε the server aborts its
schedule to return to the origin only to get back to position 1. This yields a total
completion time of ABORT(σ) = 3−2ε while we have OPT(σ) = 1. Thus, the ratio
ABORT(σ)/OPT(σ) can be made arbitrarily close to 3 by choosing ε sufficiently
small.

t

pOPT

1

1
σ1 σ2

t

pABORT

1 2 3

1
σ1 σ2

Figure 3.1: TSP-instance σ1 = (1; 0), σ2 = (1; 1−ε) for the open case on the halfline
where ABORT is (close to) 3-competitive.

The same competitive ratio holds in the uncapacitated open case.

Theorem 3.3. Algorithm ABORT is 3-competitive for uncapacitated open online
Dial-a-Ride if one omits unloading requests and the ratio is tight.

Proof. The proof is identical to the proof of Theorem 3.2 if one omits unloading
requests.

3.1.2 ABORT for Closed Online Dial-a-Ride

Now we prove that ABORT is 2.5-competitive for the preemptive closed case.

Theorem 3.4. Algorithm ABORT is 2.5-competitive for preemptive closed online
Dial-a-Ride and the ratio is tight.

Proof. Again, let tn be the last release time from σ, let tstart denote the last time the
server is located empty at the origin before tn and let ti be the first release time after
tstart. At time ti the server aborts its current schedule and returns to the origin by
a schedule T return. We distinguish two cases now. If (ti− tstart) ≤ 1/2OPT(σ≤tstart),
then at ti going back to the origin in the same way as the server has moved out
at tstart allows to unload all currently carried requests at their respective sources in
time (ti − tstart) by Lemma 3.1. Thus, we have

|T return| ≤ 1/2OPT(σ). (3.1)
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If (ti − tstart) > 1/2OPT(σ≤tstart), then we have |T return| < 1/2OPT(σ≤tstart) since
completing the tour for σ≤tstart obviously delivers every request carried at time ti to
its destination. Thus, inequality (3.1) holds in both cases and we obtain

ABORT(σ) = ti︸︷︷︸
≤OPT(σ)

+ |T return|︸ ︷︷ ︸
≤1/2OPT(σ)

+L∗(tn, 0, σ≤tn)︸ ︷︷ ︸
≤OPT(σ)

≤ 2.5OPT(σ).

The following TSP-instance shows that this ratio is tight even on the halfline
R+

0 (cf. Figure 3.2). Consider σ = {(1; 1), (0; 2− ε)} with some small ε > 0. Right
before ABORT is able to serve (1; 1) at time 2− ε the server aborts its schedule to
only return to the origin and then move up to 1 and return to 0 again. This yields
a total completion time of ABORT(σ) = 5− 2ε while we have OPT(σ) = 2. Thus,
the ratio ABORT(σ)/OPT(σ) can be made arbitrarily close to 2.5 by choosing ε
sufficiently small.

t

pOPT

1

1
σ1

σ2 t

pABORT

1 2 3 4 5

1
σ1

σ2

Figure 3.2: TSP-instance σ1 = (1; 1), σ2 = (0; 2 − ε) for the closed case on the
halfline where ABORT is (close to) 2.5-competitive.

As in the open version, the same competitive ratio carries over from the pre-
emptive to the uncapacitated case.

Theorem 3.5. Algorithm ABORT is 2.5-competitive for uncapacitated closed on-
line Dial-a-Ride if one omits unloading requests and the ratio is tight.

Proof. The proof is identical to the proof of Theorem 3.4 if one omits unloading
requests.

3.2 Algorithm: ABORT-AND-WAIT

In this section we consider the algorithm ABORT-AND-WAIT (AAW, Algorithm
2) which extends ABORT by a waiting routine: Whenever new requests are released
the server also returns to the origin in a shortest possible way while unloading every
currently carried request at its respective source. But once at the origin the server
waits as long as it can still be θ-competitive for the remaining requests and then
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starts a shortest schedule for them. Here θ ≥ 1 is a scalable waiting parameter.
We find that this waiting routine improves the competitiveness of ABORT. In the
preemptive (and uncapacitated) open case AAW is

(
1 +
√
2
)
-competitive and in

the corresponding closed case AAW is 2-competitive for general metric spaces if one
chooses suitable θ ≥ 1.

We do not claim originality for the algorithm. A similar algorithm has already
been investigated by Bjelde et al. [1, algorithm 3] for the preemptive open case
on the real line. In their version of the algorithm the server instantly unloads all
carried requests at its current position once new requests are released and then takes
a shortest possible tour back to the origin. This complicates the analysis for general
metric spaces since requests can be unloaded at positions which extend the length
of an optimal tour starting from 0 in some spaces. In this sense AAW naturally
extends their algorithm to be suitable for arbitrary metric spaces in the open case.
It also tightens the competitive result of the strategy for the closed case (matching
the lower bound) which is not considered separately by Bjelde et al. since a best
possible algorithm was already known in the closed case (cf. Table 2.1).

Algorithm 2: AAW for Open/Closed online Dial-a-Ride
this function is called upon receiving a new request
input : unserved requests σ≤t, current server-position pAAW(t)
output: open/closed tour serving σ≤t
T return ←− shortest-possible tour back to the origin unloading every
currently carried request at its respective source
T new ←− open/closed tour of length L(t, 0, σ≤t) (respectively L∗(t, 0, σ≤t))
starting at 0 and serving σ≤t
return T return ⊕ waituntil((θ − 1)OPT(σ≤t))⊕ T new

3.2.1 AAW for Open Online Dial-a-Ride

Let us first prove that AAW is
(
1 +
√
2
)
-competitive in the preemptive open setting.

Theorem 3.6. For θ = 1 +
√
2 algorithm AAW is

(
1 +
√
2
)
-competitive for pre-

emptive open online Dial-a-Ride.

Proof. Assume that the AAW-server is always able to return to the origin unloading
all currently carried requests at their respective sources before time

√
2OPT(σ≤t)

whenever new requests arrive at time t. Once the last request is released at time tn,
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the server returns to the origin and waits there until
√
2OPT(σ≤tn) before starting

a new schedule for the remaining requests of length L(tn, 0, σ≤tn). Thus, we obtain

AAW(σ) =
√
2OPT(σ≤tn) + L(tn, 0, σ≤tn) ≤

(
1 +
√
2
)
OPT(σ).

Hence, it suffices to show that the server is always able to return to the origin and
unload all currently carried requests at their sources in time

√
2OPT(σ≤t) whenever

requests are released at time t. We prove this by induction over the number n of
requests. Obviously, the statement holds for n = 1 or if the server is already located
at the origin at time tn. Thus, we suppose that the statement is true for n− 1 for
some n ≥ 2 and that the server is not at the origin at time tn. Now let tstart be the
last time before tn when the AAW-server left the origin being empty and let ti be
the first release time after tstart. Note that we have tstart =

√
2OPT(σ≤tstart) by the

induction hypothesis. We now distinguish two cases depending on the value of ti.
Firstly, if ti ≥ tstart +OPT(σ≤tstart) =

(
1 +
√
2
)
OPT(σ≤tstart) or equivalently(√

2− 1
)
ti ≥ OPT(σ≤tstart) (3.2)

since 1 +
√
2 = 1/

(√
2− 1

)
, then at time ti the AAW-server has just served all

requests from σ≤tstart and need not unload any requests. Thus, the server returns
from a position not further away from the origin than OPT(σ≤tstart) in time at most

ti +OPT(σ≤tstart) ≤
√
2(ti) ≤

√
2OPT(σ≤tn)

where the first inequality holds due to (3.2).
Secondly, if ti < tstart +OPT(σ≤tstart) =

(
1 +
√
2
)
OPT(σ≤tstart) or equivalently(√

2− 1
)
ti < OPT(σ≤tstart), (3.3)

then the AAW-server might still carry requests at time ti. Taking the inverse route
back to the origin as the one started at time tstart (cf. Lemma 3.1) allows to return
all carried requests at their respective sources and arrive at 0 in time

ti + (ti − tstart) = 2ti −
√
2OPT(σ≤tstart) <

√
2(ti) ≤

√
2OPT(σ≤tn)

where the first inequality is true by (3.3).

The same competitive ratio holds for the uncapacitated open case.
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Theorem 3.7. For θ = 1 +
√
2 algorithm AAW is

(
1 +
√
2
)
-competitive for unca-

pacitated open online Dial-a-Ride if one omits unloading requests.

Proof. The proof is identical to the proof of Theorem 3.6 if one omits unloading
requests.

One might be tempted to greedily force a better competitive ratio by reducing
the value of the waiting parameter θ. The following remark states that this is not
possible even on the halfline R+

0 .

Remark 3.8. Choosing θ ∈
[
1, 1 +

√
2
)
yields no better competitive ratio than 1+

√
2

for AAW in the open case. Consider the following TSP-instance on R+
0 (cf. Figure

3.3): First, a request σ1 = (1; 1) is presented. For θ ≤ 2, we present as a second
request σ2 = (2; 2). In this case, we have AAW({σ1, σ2}) = 5 and OPT({σ1, σ2}) =
2 such that their ratio is 2.5. For θ > 2, we present as a second request σ′2 = (θ; θ).
In this case, we have AAW({σ1, σ′2}) = 2θ+1 and OPT({σ1, σ′2}) = θ. As 2θ+1

θ
is a

monotonically decreasing expression for θ < 1 +
√
2 we obtain a competitive ratio

of at least
2(1+

√
2)+1

1+
√
2

= 1 +
√
2.

t

pOPT

1 2

1

2

σ1

σ2

t

pAAW

1 2 3 4 5

1

2

σ1

σ2

t

pOPT

1 θ

1

θ

σ1

σ′2

t

pAAW

1

θ

θ θ + 1 2θ + 1

1

θ

σ1

σ′2

Figure 3.3: At the top: TSP-instance σ1 = (1; 1), σ2 = (2; 2) for the open case on
the halfline where AAW with θ ≤ 2 is 2.5-competitive.
At the bottom: TSP-instance σ1 = (1; 1), σ′2 = (θ; θ) for the open case on the
halfline where AAW with 2 < θ < 1 +

√
2 is (at least)

(
1 +
√
2
)
-competitive.
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3.2.2 AAW for Closed Online Dial-a-Ride

Let us now consider the closed case. We show that AAW is 2-competitive in the
preemtive setting.

Theorem 3.9. For θ = 2 algorithm AAW is 2-competitive for preemptive closed
online Dial-a-Ride.

Proof. Let tn be the last release time of requests from σ. Possibly, after tn the
AAW-server is able to return empty to the origin before time OPT(σ). In this case,
the server waits at the origin until time OPT(σ) and then starts a schedule for σ≤tn .
This yields

AAW(σ) = OPT(σ) + L∗(tn, 0, σ≤tn) ≤ 2OPT(σ).

In contrast to the open case, the server might not be able to return empty to
the origin before time OPT(σ). Suppose that we are in this case. In particular,
the server is not already located at the origin being empty at time tn. Now let
tstart be the last point of time before tn when the AAW-server left the origin while
not carrying any requests. Further, let ti ≤ tn be the first release time after tstart.
Note that at time ti the server starts a shortest possible tour T return to return to
the origin and unload all currently carried requests at their respective sources to
afterwards serve all remaing requests. We obtain for the completion time of AAW:

AAW(σ) = ti + |T return|+ L∗(tn, 0, σ≤tn). (3.4)

For the tour returning to the origin, we have

|T return| ≤ (ti − tstart) (3.5)

by Lemma 3.1. As a consequence of the triangle inequality and simple properties
of L∗(·, ·, ·), we further obtain

L∗(tn, 0, σ≤tn) ≤ OPT(σ≤tstart) + L∗(ti, 0, σ≥ti)

≤ OPT(σ≤tstart) + d
(
0, pOPT(ti)

)
+ L∗

(
ti, p

OPT(ti), σ≥ti
)

≤ OPT(σ≤tstart) + 2L∗
(
ti, p

OPT(ti), σ≥ti
)
. (3.6)
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Plugging (3.5) and (3.6) into (3.4) yields

AAW(σ) ≤ 2ti−tstart +OPT(σ≤tstart)︸ ︷︷ ︸
≤0 by waiting routine

+2L∗
(
ti, p

OPT(ti), σ≥ti
)

≤ 2ti + 2L∗
(
ti, p

OPT(ti), σ≥ti
)

≤ 2OPT(σ)

where the last inequality holds since OPT needs to respect release times.

Again, the same competitive ratio holds for the uncapacitated closed case.

Theorem 3.10. For θ = 2 algorithm AAW is 2-competitive for uncapacitated closed
online Dial-a-Ride if one omits unloading requests.

Proof. The proof is identical to the proof of Theorem 3.9 if one omits unloading
requests.

Ausiello et al. [6, Thm 3.2] have shown that a competitive ratio of 2 is best-
possible for preemptive or uncapacitated closed online Dial-a-Ride on general metric
spaces. Focusing only on the real line R or the halfline R+

0 better competitive ratios
than 2 might be possible (cf. Table 2.1). But, as in the open case, greedily reducing
the value of the waiting parameter θ does not yield a better competitive ratio in
these cases.

Remark 3.11. Choosing θ ∈ [1, 2) yields no better competitive ratio than 2 for
AAW in the closed case on the halfline R+

0 . Consider the following TSP-instance
on R+

0 (cf. Figure 3.4). First, a request σ1 = (1; 1) is presented. For θ ≤ 1.5, we
present as a second request σ2 = (0; 2 − ε) for some small ε > 0 right before the
AAW-server visits position 1. In this case we have AAW({σ1, σ2}) = 5 − 2ε and
OPT({σ1, σ2}) = 2 yielding a competitive ratio arbitrarily close to 2.5 for small
enough ε > 0. For θ > 1.5, we present as a second request σ′2 = (0; 2θ − 1− ε). In
this case, we have AAW({σ1, σ′2}) = 2θ + 2 − 2ε and OPT({σ1, σ′2}) = 2θ − 1 − ε
yielding a competitive ratio of at least 6−2ε

3−ε = 2 since 2θ+2−2ε
2θ−1−ε is a monotonically

decreasing expression for θ ∈ [1.5, 2) and small enough ε > 0.
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Figure 3.4: At the top: TSP-instance σ1 = (1; 1), σ2 = (2; 2− ε) for the closed case
on the halfline where AAW with θ ≤ 1.5 is (close to) 2.5-competitive.
At the bottom: TSP-instance σ1 = (1; 1), σ2 = (2θ − 1 − ε) for the closed case on
the halfline where AAW with 1.5 < θ < 2 is (close to)

(
1 +
√
2
)
-competitive.

3.3 Algorithm: ABORT-OR-REPLAN

In this section we consider the further improved strategy ABORT-OR-REPLAN
(AOR): Instead of always aborting a current schedule whenever new requests ar-
rive, the AOR-server only returns to the origin if it can do so in reasonable time.
Otherwise, the AOR-server replans its schedule and serves all remaining old and
new requests from its current position instead. We only analyze AOR for the unca-
pacitated closed case on the halfline (see Algorithm 3). In this setting we present
a proof that AOR is 1.8536-competitive which improves the former upper bound of
2 established by Ascheuer et al. [3, Thm 6] as mentioned earlier. The analysis is
not tight in the sense that a better competitive ratio than 1.8536 might be possible
by reducing waiting times. The proof is rather technical and heavily depends on
the aformentioned setting. AOR might also improve the competitiveness of AAW
in other cases but these are not treated in this thesis.

3.3.1 AOR for Uncapacitated Closed Online Dial-a-Ride on

the Halfline

Before analyzing the actual algorithm let us first consider the setting of uncapaci-
tated closed online Dial-a-Ride on the halfline: Since the server has infinite capacity,
we can demand that whenever it moves over a source of a request, the request is
picked up and whenever it is moving over a destination of a request it is currently
carrying, the request is delivered. Now on the halfline, if the server is located at
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the origin, it can serve all released requests in a single closed tour to the upper-
most position of the requests. While going up, all requests are picked up and at
the latest on the way back down to 0 all requests are eventually delivered to their
respective destinations. There is no shorter tour than this for the released requests
since the uppermost position must be visited. We denote the uppermost position
of all requests released up to time t that are not served if the AOR-server returns
to the origin from its current position by

pU(≤ t) := max

{
max(ai, bi) :

(ai, bi; ti) ∈ σ≤t not currently carried with
bi ≤ pAOR(t), nor with bi ≤ ai ≤ pAOR(ti)

}
.

By pU(= t) we denote the uppermost position of all requests released at time t, i.e.,

pU(= t) := max{max(ai, bi) : (ai, bi; ti) ∈ σ with ti = t}.

Algorithm AOR now works as following: Again, let θ ≥ 1 be a scalable waiting
parameter. Similar to AAW if at the origin, the AOR-server waits for as long as
it can be θ-competitive until time θOPT(σ≤t) − 2pU(≤ t) before starting a new
schedule to the uppermost position. Further, whenever new requests are released
and the AOR-server can afford to abort its current schedule and return to the origin
while staying θ-competitive for the remaining requests, the server does so. For this
purpose we define for the length of the abort-schedule

abort(t) := t+ pAOR(t) + 2pU(≤ t).

If we choose θ ∈
[
1 +
√
2/2, 2

]
, we see that it is not always possible for AOR to

abort and stay θ-competitive. In particular, it can happen that while the server is
currently on a schedule, started at some time tstart at the origin, critical requests
are released that do not allow to abort while staying θ-competitive. In such a case,
AOR switches to a different strategy depending on the current state of the server:
If the AOR-server cannot afford to abort while staying θ-competitive and has not
yet been to the uppermost position pU(≤ tstart), then it continues its tour up to
pU(≤ tstart) as originally planned. Once there, instead of directly going down back
to 0, it serves all requests not served otherwise in a shortest possible way on its tour
back to 0. For this purpose let σup≤t be the set of requests released before or at time
t ≤ tstart + pU(≤ tstart) and not served once the AOR-server arrives at pU(≤ tstart),
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i.e.,

σup≤t =

{
(ai, bi; ti) ∈ σ≤t :

not carried with pAOR(t) ≤ bi ≤ pU(≤ tstart),

nor pAOR(t) ≤ ai ≤ bi ≤ pU(≤ tstart)

}
.

Otherwise, if the AOR-server cannot afford to abort while staying θ-competitive
and has already been to pU(≤ tstart), then it immediately starts a new shortest
tour for the remaining requests setting off from its current position. We find that
in both cases AOR finishes serving all requests and returns to the origin in time
(1 + θ/2)OPT(σ) if θ ≥ 1 +

√
2/2 ≈ 1.7071 yielding a competitive ratio of roughly

1.8536.
It might be possible to greedily reduce the value of the waiting parameter θ ≥ 1

below 1 +
√
2/2 to obtain an improved competitive ratio for AOR. However, our

proof for the competitive ratio of 1.8536 heavily depends on Lemma 3.14 which only
holds for θ ≥ 1 +

√
2/2.

Algorithm 3: AOR for Closed Online Dial-a-Ride on the Halfline (c =∞)
this function is called upon receiving a new request
input : unserved requests σ≤t, current server-position pAAW(t), last time

tstart such that the server left 0 with abort(tstart) = θOPT(σ≤tstart)
output: closed tour serving σ≤t
if abort(t) ≤ θOPT(σ≤t) then

tstartnew ←− θOPT(σ≤t)− 2pU(≤ t)

return move(0)⊕ waituntil(tstartnew )⊕move(pU(≤ t))⊕move(0)

else if t < tstart + pU(≤ tstart) then
TDOWN ←− tour of length L∗

(
t, pU(≤ tstart), σup≤t

)
return move(pU(≤ tstart))⊕ TDOWN

else
TDOWN ←− tour of length L∗

(
t, pAOR(t), σ≤t

)
return TDOWN

The following theorem shows that for θ ∈
[
1 +
√
2/2, 2

]
AOR is (1 + θ/2)-

competitive. The proof uses Lemmas and Corollarys 3.13-3.19.

Theorem 3.12. For θ ∈
[
1 +
√
2/2, 2

]
algorithm AOR is (1+θ/2)-competitive and

the ratio is tight.

Proof. First of all, note that for the first release time t1 we find abort(t1) ≤
θOPT(σ≤t1) by Lemma 3.14. By Lemma 3.17 we then know that the AOR-server
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leaves the origin for the first time at a time t′ with abort(t′) = θOPT(σ≤t′). As
we now know that such a time exists, let tstart be the last point of time when the
AOR-server leaves the origin with abort(tstart) = θOPT(σ≤tstart). For all t > tstart

we now have abort(t) > θOPT(σ≤t). Otherwise Corollary 3.16 and Lemma 3.17
would contradict the assumption that tstart is the last time the AOR-server leaves
the origin with abort(tstart) = θOPT(σ≤tstart).

This allows us to obtain properties for the requests released after tstart. Firstly,
note that by the contraposition of Lemma 3.18 (ii) we know that no request is
released after tstart + 2pU(≤ tstart). Further, not all requests released after tstart

have an influence on the concrete movement of the AOR-server. Consider e.g. the
following two cases:

• For requests (ai, bi; ti) ∈ σ>tstart with ti ∈ (tstart, tstart + pU(≤ tstart)] and
pAOR(ti) ≤ ai < bi we have ai < bi < pU(≤ tstart) by the contraposition
of Lemma 3.14. Thus, all such requests are served while the AOR-server
moves towards pU(≤ tstart).

• For requests (ai, bi; ti) ∈ σ>tstart with bi ≤ ai we distinguish two possi-
bilities. If such a request is released while the server is moving upwards
to pU(≤ tstart), i.e., ti ∈ (tstart, tstart + pU(≤ tstart)], then any tour back
from pU(≤ tstart) to the origin serves it since bi ≤ ai < pU(≤ tstart) =

pAOR(tstart + pU(≤ tstart)) by the contraposition of Lemma 3.14. Otherwise,
if such a request is released after the server has been to position pU(≤ tstart),
i.e., ti ∈ (tstart + pU(≤ tstart), tstart + 2pU(≤ tstart)], then by the contraposition
of Lemma 3.18 (iii) we have bi ≤ ai ≤ pAOR(ti) and the request is also served
by any route back to the origin.

These considerations motivate the following definition of the set of relevant requests
σup that are released while the server is moving upwards to pU(≤ tstart), respectively
σdown for the relevant requests released after the server visited pU(≤ tstart) at time
tstart + pU(≤ tstart) =: ttop:

σup :=
{
(ai, bi; ti) ∈ σ : ti ∈

(
tstart, ttop

]
, ai < pAOR(ti), bi

}
,

σdown :=
{
(ai, bi; ti) ∈ σ : ti ∈

(
ttop, tstart + 2pU(≤ tstart)

]
, ai < bi

}
.
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Taking the considerations from above we conclude: If the AOR-server serves all
requests from σup∪σdown during its schedule down to 0 from pU(≤ tstart), it already
serves all requests from σ>tstart in the process.

Let us now investigate how much time AOR needs to serve all requests
from σup ∪ σdown. Once the AOR-server arrives at pU(≤ tstart) at time ttop =

tstart + pU(≤ tstart), it follows a shortest schedule back to the origin serving unserved
requests of length L∗(ttop, pU(≤ tstart), σ≤ttop) = L∗(ttop, pU(≤ tstart), σup). Because
every request (ai, bi; ti) ∈ σdown satisfies ai < bi ≤ pU(≤ tstart)−(ti−ttop) by the con-
traposition of Lemma 3.18 (iii), we obtain from Lemma 3.19 that the unique optimal
tours for σup∪

{
(aj, bj; tj) ∈ σdown : tj < ti

}
and σup∪

{
(aj, bj; tj) ∈ σdown : tj < ti

}
∪

{(ai, bi; ti)} coincide until time ti. Iterating this argument for each request from
σdown yields that whenever a new request from σdown is released, AOR can adapt
its route to still be optimal in the sense that it completes its tour for σup ∪ σdown in
time ttop + L∗(ttop, pU(≤ tstart), σup ∪ σdown). Thus, we find for the completion time
of AOR:

AOR(σ) = tstart + pU(≤ tstart) + L∗(ttop, pU(≤ tstart), σup ∪ σdown). (3.7)

For better readability, we now write L∗ for L∗(ttop, pU(≤ tstart), σup ∪ σdown) and pU
for pU(≤ tstart).

Let us now take a look at the completion time of OPT. We can assume that
OPT serves no request from σup or σdown before visiting pU : If OPT does serve a
request (aj, bj; tj) ∈ σup ∪ σdown before visiting pU , we get OPT(σ) ≥ tstart + 2pU

since the OPT-server picks up the request at aj after the AOR-server had been
there and then still needs to go to pU and back to 0. Hence, together with (3.7) we
get

AOR(σ)
OPT(σ)

≤ tstart + 2pU + (L∗ − pU)
tstart + 2pU

by (3.7)

≤ 1 +

≤2pU︷ ︸︸ ︷
(L∗ − pU)
tstart + 2pU︸ ︷︷ ︸

=abort(tstart)=θOPT(σ)≥2θpU

≤ 1 +
2pU
2θpU

= 1 +
1

θ
≤ 1 + θ/2
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where the last inequality holds if θ ≥
√
2 ≈ 1.41 which completes the proof. Conse-

quently, we can indeed assume that OPT serves no request from σup or σdown before
visiting pU . Thus, we have

OPT(σ) ≥ 2pU + (L∗ − pU). (3.8)

For the next part of the proof let "diff" denote the extra time that OPT needs
to serve the incoming requests from after tstart, i.e., diff := OPT(σ)−OPT(σ≤tstart).
Note that (L∗ − pU) denotes the extra time it takes AOR to serve the incoming
requests from after tstart. Possibly OPT needs more extra time to serve the requests
from after tstart than AOR. We assume that we even have θdiff ≥ (L∗ − pU). We
then obtain

AOR(σ) = tstart + 2pU︸ ︷︷ ︸
=abort(tstart)=θOPT(σ≤tstart )

+(L∗ − pU)︸ ︷︷ ︸
≤θdiff

≤ θOPT(σ).

Thus, we can assume that we have θdiff < (L∗ − pU). Here we need to distinguish
two cases depending on the value of (L∗ − pU).

Case 1. Suppose that (L∗ − pU) ≤ 4−2θ
θ
pU . In this case OPT needs less extra time

to serve the requests released after tstart than AOR. This may happen if e.g. OPT
was waiting at some point during its schedule for σ≤tstart and can now use this time
for good to serve requests from after tstart. Let "prepared" denote the difference
between the extra time it takes to serve the requests from after tstart for AOR and
OPT, i.e.,

prepared := (L∗ − pU)− diff.

From (3.8) and

(L∗ − pU) = prepared+ diff = prepared+OPT(σ)−OPT(σ≤tstart)

we obtain

OPT(σ≤tstart) ≥ 2pU + prepared. (3.9)

Using (3.7), (3.9) and the case assumption (L∗ − pU) ≤ 4−2θ
θ
pU we get for the ratio

of AOR(σ) and OPT(σ):
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AOR(σ)
OPT(σ)

=
tstart + 2pU + (L∗ − pU)
OPT(σ≤tstart) + diff

by (3.7)

=
θOPT(σ≤tstart) + (L∗ − pU)

OPT(σ≤tstart) + diff

≤
θ
(
2pU +

≤(L∗−pU )︷ ︸︸ ︷
prepared

)
+ (L∗ − pU)

2pU + prepared+ diff︸ ︷︷ ︸
=(L∗−pU )

mon. incr. expr., (3.9)

≤ θ(2pU + (L∗ − pU)) + (L∗ − pU)
2pU + (L∗ − pU)

= θ +
(L∗ − pU)

2pU + (L∗ − pU)

≤ θ +
4−2θ
θ
4
θ

mon. incr. expr., (ass)

= 1 +
θ

2
.

Note that for the first inequality the expression is monotonically increasing for
OPT(σ≤tstart) since we assumed that θdiff < (L∗ − pU).

Case 2. Suppose that (L∗ − pU) >
4−2θ
θ
pU . Let ti be the first release time after

tstart. First, let us assume that ti ≤ 2pU . From (3.7), (3.8) and the case assumption
(L∗ − pU) > 4−2θ

θ
pU we obtain

AOR(σ)
OPT(σ)

≤ tstart + 2pU + (L∗ − pU)
2pU + (L∗ − pU)

by (3.7), (3.8)

= 1 +

≤ti≤2pU︷︸︸︷
tstart

2pU + (L∗ − pU)︸ ︷︷ ︸
> 4−2θ

θ
pU

≤ 1 +
2pU

2pU + 4−2θ
θ
pU

= 1 +
θ

2
.

Now let us assume that ti > 2pU . Here we note

OPT(σ) ≥ ti + (L∗ − pU) (3.10)

as OPT needs to respect release times and (L∗ − pU) denotes the length of the
intervals that every tour for σup ∪ σdown needs to traverse (cf. Lemma 3.19). Using
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(3.7), (3.10) and the case assumption (L∗ − pU) > 4−2θ
θ
pU we get

AOR(σ)
OPT(σ)

≤ tstart + 2pU + (L∗ − pU)
ti + (L∗ − pU)

by (3.7), (3.10)

≤ ti + 2pU + (L∗ − pU)
ti + (L∗ − pU)

≤
4pU + 4−2θ

θ
pU

2pU + 4−2θ
θ
pU

mon. decr. expr., (ass)

= 1 +
θ

2
.

In order to see that the ratio of (1 + θ/2) is tight for the non-trivial cases
θ < 2, consider the following Dial-a-Ride instance for θ < 2 (cf. Figure 3.5). At
time 1 two requests are released: σ1 = (1, 1; 1) and σ2 =

(
0, 4−2θ

2θ
; 1
)
. Note that

OPT({σ1, σ2}) = 2+ 4−2θ
θ

as the OPT-server can already be at position 1 at time 1.
Since θ ·

(
2 + 4−2θ

θ

)
= 4, the AOR-server starts its tour towards position 1 at time

2. Right after the AOR-server leaves the origin, at time 2 + ε for some small ε > 0,
a new request is presented σ3 =

(
0, 4−2θ

2θ
; 2 + ε

)
. We obtain OPT({σ1, σ2, σ3}) =

2+ ε+ 4−2θ
θ

. AOR does not abort its schedule towards position 1 at time 2+ ε since

abort(2 + ε)

OPT({σ1, σ2, σ3})
=

2 + 2ε+ 2

2 + ε+ 4−2θ
θ

=
θ
(
2 + 4−2θ

θ

)
+ 2ε

2 + 4−2θ
θ

+ ε
> θ

for θ < 2. Thus, we get AOR({σ1, σ2, σ3}) = 4 + 4−2θ
θ

yielding a competitive
ratio of at least

(
4 + 4−2θ

θ

)
/
(
2 + ε+ 4−2θ

θ

)
which can be made arbitrarily close to

(4 + 4−2θ
θ

)/(2 + 4−2θ
θ

) = 1 + θ/2 by choosing ε > 0 sufficiently small.

t

pOPT

2 + ε+ 4−2θ
θ

1

4−2θ
2θ

σ1

σ2 σ3 t

pABORT

4 + 4−2θ
θ

1

4−2θ
2θ

σ1

σ2 σ3

Figure 3.5: DaR-instance σ1 = (1, 1; 1), σ2 =
(
0, 4−2θ

2θ
; 1
)
, σ3 =

(
0, 4−2θ

2θ
; 2 + ε

)
for the closed case on the halfline where AOR with θ < 2 is (close to) (1 + θ/2)-
competitive.

The following lemma states the simple fact that if the AOR-server is aborting a
schedule while new requests arrive that do not force AOR to move any differently
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than it planned anyway, then AOR can keep aborting and still be θ-competitive for
the remaining requests.

Lemma 3.13. If at time tj requests are released with pU(= tj) ≤ pU(≤ tj−1), as
well as abort(tj−1) ≤ θOPT(σ≤tj−1

) and if the AOR-server is moving downwards
since tj−1, then abort(tj) ≤ θOPT(σ≤tj).

Proof. As pU(= tj) ≤ pU(≤ tj−1), the planned abort-tour towards pU(≤ tj−1) suf-
fices to also serve all requests released at tj. Further, as the AOR-server is moving
downwards since time tj−1 we have

pAOR(tj) = pAOR(tj−1)− (tj − tj−1). (3.11)

From this we obtain

abort(tj) = tj + pAOR(tj) + 2pU(≤ tj−1)

= tj−1 + pAOR(tj−1) + 2pU(≤ tj−1) by (3.11)

= abort(tj−1)

≤ θOPT(σ≤tj−1
) ≤ θOPT(σ≤tj).

Whenever a new extreme request is released and θ is chosen sufficiently large,
the following lemma shows that AOR can abort its schedule and be θ-competitive
for the remaining requests.

Lemma 3.14. If θ ≥ 1+
√
2/2 and at time tj a new uppermost request is released,

i.e., pU(= tj) ≥ pU(≤ tj−1), then the AOR-server can abort its current schedule
and still be θ-competitive for σ≤tj , i.e., abort(tj) ≤ θOPT(σ≤tj).

Proof. First, we consider the case that the AOR-server is located at the origin at
time tj. Then, we have abort(tj) = tj + 2pU(= tj) while
OPT(σ≤tj) ≥ max(tj + pU(= tj), 2pU(= tj)). For tj ≤ pU(= tj) we get

abort(tj)
OPT(σ≤tj)

≤ 3pU(= tj)

2pU(= tj)
= 1.5.

And similarly for tj > pU(= tj) we have

abort(tj)
OPT(σ≤tj)

≤ tj + 2pU(= tj)

tj + pU(= tj)
≤ 3pU(= tj)

2pU(= tj)
= 1.5



26 CHAPTER 3. ALGORITHMS

where the last inequality holds since the expression is monotonically decreasing for
tj ≥ pU(= tj).

Hence, we can assume that AOR is not at the origin at time tj. Let tstart be the
last point of time before tj when the AOR-server left the origin to visit pU(≤ tstart).
Also let λ ≥ 1 such that λpU(≤ tstart) = pU(= tj). For the proof we need to assume
that we have

pAOR(tj) ≤ pU(≤ tstart). (3.12)

This is obviously the case if tj is the first release time after tstart with requests above
the current extreme pU(≤ tstart). If tj is not the first release time after tstart with
new extreme requests, an inductive argument on why (3.12) holds nevertheless is
given at the end.

For the moment we assume that we have (3.12). We now distinguish two cases
depending on the value of λ.

Case 1. For λ ≤ 1+
√
2 we first of all note that since the server would have waited

otherwise, we have

tstart ≥ θOPT(σ≤tstart)− 2pU(≤ tstart) ≥ (2θ − 2)pU(≤ tstart).

For the current time tj ≥ tstart + pAOR(tj) this implies

tj ≥ (2θ − 2)pU(≤ tstart) + pAOR(tj). (3.13)

By (3.12), (3.13) and the case-assumption λ ≤ 1+
√
2 we obtain for the ratio of

abort(tj) and OPT(σ≤tj)

abort(tj)
OPT(σtj)

≤ tj + pAOR(tj) + 2λpU(≤ tstart)

tj + λpU(≤ tstart)

≤ (2θ + 2λ− 2)pU(≤ tstart) + 2pAOR(tj)

(2θ + λ− 2)pU(≤ tstart) + pAOR(tj)
mon. decr. expr., (3.13)

≤ 2θ + 2λ

2θ + λ− 1
mon. incr. expr., (3.12)

≤
2θ + 2

(
1 +
√
2
)

2θ +
√
2

mon. incr. expr., (ass)

≤ θ

where the last inequality holds only for θ ≥ 1 +
√
2/2.



3.3. ALGORITHM: ABORT-OR-REPLAN 27

Case 2. For λ > 1 +
√
2 we distinguish the following two cases depending on the

value of tj. If we have

tj ≥ λpU(≤ tstart), (3.14)

then we obtain by (3.12), (3.14) and the case-assumption λ > 1 +
√
2 that

abort(tj)
OPT(σtj)

≤ tj + pAOR(tj) + 2λpU(≤ tstart)

tj + λpU(≤ tstart)

≤ 3λpU(≤ tstart) + pAOR(tj)

2λpU(≤ tstart)
mon. decr. expr., (3.14)

≤ 3λ+ 1

2λ
by (3.12)

≤
3
(
1 +
√
2
)
+ 1

2
(
1 +
√
2
) mon. decr. expr., (ass)

= 1 +

√
2

2
≤ θ.

Similarly if we have tj < λpU(≤ tstart), we get

abort(tj)
OPT(σtj)

≤ tj + pAOR(tj) + 2λpU(≤ tstart)

2λpU(≤ tstart)

<
3λpU(≤ tstart) + pAOR(tj)

2λpU(≤ tstart)

≤ θ

by the same reasoning as above.

To complete the proof let us now show that if tj is the k-th release time after
tstart with new extreme requests and k ≥ 2, then (3.12) still holds at this point of
time. For this purpose suppose that (3.12) is true for the (k − 1)-th release time
after tstart with new extreme requests. Let this release time be given by tj−h. By the
considerations from above we know that abort(tj−h) ≤ θOPT(σ≤tj−h). Inductively
for every release time after tj−h the server keeps aborting its schedule and continues
to move down either by Lemma 3.13 if the requests are below the current extreme
or by the above considerations since (3.12) was already true at time tj−h and the
server only moved down since.

Note that Lemma 3.14 in fact holds only if θ ≥ 1 +
√
2/2 as stated by the

following remark.
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Remark 3.15. If we have θ ∈
[
1, 1 +

√
2/2
)
, there exists a request-sequence such

that the AOR-server cannot abort its current schedule and stay θ-competitive for
the remaining requests. Consider the following TSP-instance (cf. Figure 3.6). As
a first request σ1 = (1; 0) is released. When this request is served by AOR at time
2θ − 1, a new request σ2 = (2θ − 1; 2θ − 1) is released. At this time the length
of the abort-schedule for AOR is given by abort(2θ − 1) = 6θ − 2 while we have
OPT({σ1, σ2}) = 4θ−2. The least value for θ ≥ 1 that satisfies 6θ−2

4θ−2 ≤ θ is 1+
√
2/2.

t

pOPT

2θ − 1 4θ − 2

1

2θ − 1

σ1

σ2

t

pAOR

2θ − 1 6θ − 2

1

2θ − 1

σ1

σ2

Figure 3.6: TSP-instance σ1 = (1; 0), σ2 = (2θ − 1; 2θ − 1) for the closed uncapaci-
tated case on the halfline where we suppose that the AOR-server aborts its schedule
at time 2θ − 1.

Lemma 3.14 allows us to extend Lemma 3.13 such that we do not need to assume
that new requests are released only below the current uppermost position. Once
the AOR-server aborts a schedule, it does not change its decision. It returns to the
origin being θ-competitive whatever requests are released. Formally, we obtain the
following corollary.

Corollary 3.16. If θ ≥ 1 +
√
2/2 and if abort(t) ≤ θOPT(σ≤t) for some t ≥ 0,

then the AOR-server arrives at the origin at time t′ = t+ pAOR(t) with abort(t′) ≤
θOPT(σ≤t′).

The next lemma assures that while the AOR-server is located at the origin
and the currently planned schedule for the remaining requests is θ-competitive, no
request can make AOR lose its θ-competitiveness if θ is sufficiently large.

Lemma 3.17. If θ ≥ 3/2 and if the AOR-server is currently located at the origin
at time t with abort(t) ≤ θOPT(σ≤t), then AOR leaves the origin at a time tstart

for which abort(tstart) = θOPT(σ≤tstart).

Proof. Note that if no requests arrive while the AOR-server is at the origin, then
AOR waits until time θOPT(σ≤t) − 2pU(≤ t) =: tstart at which it leaves the origin
and the claim obviously holds.
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Thus, suppose the server is waiting up to some time tj > t when new requests
are released. Recall from the first part of the proof of Lemma 3.14 that pU(= tj) ≥
pU(≤ t) implies abort(tj) ≤ 3

2
OPT(σ≤tj). Hence, assume that pU(= tj) < pU(≤ t).

In this case the planned tour towards pU(≤ t) suffices to serve all requests from time
tj. As the server was waiting at the origin up to time tj with knowing the requests
from σ≤t we have tj ≤ θOPT(σ≤t)− 2pU(≤ t) which yields

abort(tj) = tj + 2pU(≤ t) ≤ θOPT(σ≤t) ≤ θOPT(σ≤tj).

Thus, whenever new requests are released at a time tj we still find abort(tj) ≤
θOPT(σ≤tj) and the server either continues to wait after tj if abort(tj) < θOPT(σ≤tj)
or it leaves the origin if abort(tj) = θOPT(σ). Iterating this argument until no re-
quests are released while the server is waiting yields that eventually the server leaves
the origin at a time tstart for which abort(tstart) = θOPT(σ≤tstart).

The next lemma is used to obtain properties for the requests that are released
once the server cannot abort its schedule anymore.

Lemma 3.18. If θ ∈
[
1 +
√
2/2, 2

]
and the AOR-server leaves the origin to start

a new schedule at time tstart, then the following statements hold:

(i) If requests are released at a time tj > tstart with pU(= tj) ≥ −2θ2+3θ+2
θ

pU(≤ tstart),
then abort(t) ≤ θOPT(σ≤t) for some t > tstart.

(ii) If requests are released at a time tj ≥ tstart + 2pU(≤ tstart), then abort(t) ≤
θOPT(σ≤t) for some t > tstart.

(iii) If requests are released at a time tj ≥ tstart + pU(≤ tstart) with pU(= tj) ≥
pU(≤ tstart)−(tj − (tstart + pU(≤ tstart))), then abort(t) ≤ θOPT(σ≤t) for some
t > tstart.

Proof. First of all let us assume that pU(= t) < pU(≤ tstart) for all t > tstart since
otherwise the statements are true by Lemma 3.14 as θ ≥ 1 +

√
2/2. Trivially, this

also implies for all t > tstart that

pAOR(t) ≤ pU(≤ tstart). (3.15)

Further, for each of the statements we suppose that abort(t) > θOPT(σ≤t) for all
t ∈ (tstart, tj). Now, let us prove the three statements separately.

Proof of (i): Requests are released at time tj > tstart with pU(= tj) ≥
−2θ2+3θ+2

θ
pU(≤ tstart). Since any tour for σ≤tj needs to return to the origin in the
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end, we obtain as a lower bound for the length of the optimal offline solution

OPT(σ≤tj) ≥ tj + pU(= tj) ≥ tj +
−2θ2 + 3θ + 2

θ
pU(≤ tstart). (3.16)

As the server was located at the origin at time tstart we find for the release time tj
that

tj ≥ tstart + pAOR(tj) ≥ θOPT(σ≤tstart)︸ ︷︷ ︸
≥2pU (≤tstart)

−2pU(≤ tstart) + pAOR(tj)

≥ (2θ − 2)pU(≤ tstart) + pAOR(tj). (3.17)

Using (3.16) and (3.17) we obtain for the ratio of abort(tj) and OPT(σ≤tj):

abort(tj)
OPT(σ≤tj)

≤ tj + pAOR(tj) + 2pU(≤ tstart)

tj +
−2θ2+3θ+2

θ
pU(≤ tstart)

by (3.16)

≤ 2θpU(≤ tstart) + 2pAOR(tj)(
2θ − 2 + −2θ2+3θ+2

θ

)
pU(≤ tstart) + pAOR(tj)

mon. decr. expr., (3.17)

≤ (2θ + 2)pU(≤ tstart)(
2θ − 1 + −2θ2+3θ+2

θ

)
pU(≤ tstart)

mon. incr. expr., (3.15)

=
2θ + 2

2θ − 1 + −2θ2+3θ+2
θ

= θ.

Proof of (ii): Requests are released at time tj ≥ tstart + 2pU(≤ tstart). By (i) we
can assume that pU(≤ tj), p

AOR(tj) ≤ −2θ2+3θ+2
θ

pU(≤ tstart). Thus, we have

abort(tj) ≤ tj + 3
−2θ2 + 3θ + 2

θ
pU(≤ tstart)

which yields

abort(tj)
OPT(σ≤tj)

≤
tj + 3−2θ

2+3θ+2
θ

pU(≤ tstart)

tj

≤ 1 +
3−2θ

2+3θ+2
θ

pU(≤ tstart)

2θpU(≤ tstart)

= 1 +
3−2θ

2+3θ+2
θ

2θ
≤ θ

where the last inequality holds only if θ ≥ c with c ≈ 1.6961 being the largest root
of the polynomial −X3 − 2X2 + 9/2X + 3.
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Proof of (iii): Requests are released at time tj ≥ tstart + pU(≤ tstart) with
pU(= tj) ≥ pU(≤ tstart)− (tj − (tstart + pU(≤ tstart))). By (i) we can assume that

pU(= t) ≤ −2θ
2 + 3θ + 2

θ
pU(≤ tstart) (3.18)

for all t > tstart. Consequently once the server reaches position pU(≤ tstart) at time
tstart + pU(≤ tstart), it moves down at least until position −2θ2+3θ+2

θ
pU(≤ tstart) and

then does not move above this position anymore. For t = tj in (3.18) we get

−2θ2 + 3θ + 2

θ
pU(≤ tstart) ≥ pU(≤ tstart)− (tj − (tstart + pU(≤ tstart)))

which is equivalent to

tj ≥ tstart + pU(≤ tstart) +

(
1− −2θ

2 + 3θ + 2

θ

)
pU(≤ tstart).

Note that the right hand side of the last inequality is exactly the time it takes
for the AOR-server to move to position −2θ2+3θ+2

θ
pU(≤ tstart) after having visited

pU(≤ tstart) at time tstart + pU(≤ tstart). Hence, we obtain

pAOR(tj) ≤
−2θ2 + 3θ + 2

θ
pU(≤ tstart).

Together with (3.18) for t = tj this yields for the length of the abort-schedule

abort(tj) ≤ tj + 3
−2θ2 + 3θ + 2

θ
pU(≤ tstart). (3.19)

Further, for the optimal offline solution of σ≤tj , we find that

OPT(σ≤tj) ≥ tj + pU(= tj)

≥ tj + pU(≤ tstart)− (tj − ( tstart︸︷︷︸
≥θOPT(σ≤tstart )−2pU (≤tstart)

+pU(≤ tstart)))

≥ θOPT(σ≤tstart)

≥ 2θpU(≤ tstart). (3.20)
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Using (3.19) and (3.20) we obtain similarly to the proof of (ii) that

abort(tj)
OPT(σ≤tj)

≤
tj + 3−2θ

2+3θ+2
θ

pU(≤ tstart)

OPT(σ≤tj)
by (3.19)

≤ tj
OPT(σ≤tj)︸ ︷︷ ︸

≤1

+
3−2θ

2+3θ+2
θ

pU(≤ tstart)

2θpU(≤ tstart)
by (3.20)

≤ 1 +
3−2θ

2+3θ+2
θ

2θ
≤ θ

for θ ≥ c ≈ 1.6961.

The following lemma specifies how the tour of the AOR-server back to the origin
looks like once the server arrives at an uppermost position of a planned schedule.

Lemma 3.19. Let t, pU ≥ 0 and σ = {(a1, b1; t1), ..., (an, bn; tn)} be a set of requests
where ai < bi ≤ pU and ti− (pU − ai) ≤ t for all i = 1, ..., n. Then there is a unique
optimal tour for σ starting at position pU at time t of length L∗(t, pU , σ).

Further, let (an+1, bn+1; tn+1) be a request with an+1 < bn+1 ≤ pU − (tn+1 − t),
tn+1 ∈ [0, t+ pU ]. Then the unique optimal tours for σ and σ ∪ {(an+1, bn+1; tn+1)}
starting at position pU and at time t coincide until time tn+1.

Proof. First of all note that any tour for σ starting at pU at time t need not wait
for request releases: As soon as the server reaches a position ai, it can pick up the
request (ai, bi; ti) since ti − (pU − ai) ≤ t for all i = 1, ..., n. Further, we know that
any tour for σ that starts at position pU at time t needs to contain (possibly inter-
rupted) segments where the server moves up from ai to bi for all i ∈ {1, ..., n}. Let
{[a′1, b′1], ..., [a′k, b′k]} be the set of intervals that is obtained by replacing intersecting
intervals from {[a1, b1], ..., [an, bn]} with their unions (cf. Figure 3.7) such that

• for all i ∈ {1, ..., k} there is a subset I ⊆ {1, ..., n} with [a′i, b
′
i] =

⋃
j∈I [aj, bj]

• and for all i ∈ {1, ..., k}, respectively i ∈ {1, ..., k − 1}, we have a′i < b′i and
b′i < a′i+1.

Clearly, any tour starting at pU at time t that serves σ needs to move up the
intervals [a′i, b′i] for all i ∈ {1, ..., k} at some point of time. Thus, the unique optimal
tour of length L∗(t, pU , σ) is given by

move(a′k)⊕move(b′k)⊕ · · · ⊕move(a′1)⊕move(b′1)⊕move(0).
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In order to see that the unique optimal tours for σ and σ ∪ {(an+1, bn+1; tn+1)}
starting at position pU and at time t coincide until time tn+1, let a′k, ..., a′l be all
a′i with a′i ≥ bn+1. The server of the optimal tour for σ ∪ {(an+1, bn+1; tn+1)} as
well as the one for the optimal tour for σ starts by traversing all the intervals
[a′k, b

′
k], ..., [a

′
l, b
′
l] and then moves downwards: The server of the optimal tour for

σ ∪ {(an+1, bn+1; tn+1)} moves towards some ai < bn+1 where i ∈ {1, ..., n + 1}
depends on the exact values of an+1 and bn+1 and the server of the optimal tour for
σ moves towards a′l−1 < bn+1. Consequently both tours coincide at least until they
reach bn+1 which is not possible any earlier than tn+1 since bn+1 ≤ pU−(tn+1−t).

0 pU

a1 b1

a2 b2

a3 b3

a4 b4

a′1 b′1 a′2 b′2

Figure 3.7: Example of intervals {[a1, b1], ..., [a4, b4]} being replaced by
{[a′1, b′1], [a′2, b′2]}.
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