
Department of Mathematics

Master Thesis

Quantum Space-Bounded Computation
and Graph Connectivity

Roman Edenhofer

17th December, 2023

Supervisors: PD Dr. Kord Eickmeyer, Dr. Simon Apers

Contents

Introduction 1

1 Preliminaries 3
1.1 The Computational Model . 3
1.2 Random Walks on Graphs . 6

1.2.1 The undirected case . 7
1.2.2 The directed case . 11

1.3 Unambiguity and Fewness . 14

2 HHL-algorithm 17
2.1 Hamiltonian Simulation . 17
2.2 Quantum Phase Estimation . 18
2.3 The HHL-circuit . 19
2.4 The general non-hermitian case . 20

3 Connectivity in Quantum-Logspace 22
3.1 The counting Laplacian . 23
3.2 The random-walk Laplacian . 25
3.3 Open Questions . 27

Bibliography 28

Appendix 30
A.1 Inclusions of Complexity Classes . 30
A.2 Connectivity on directed trees . 32

Introduction

Graph connectivity is a central problem in computational complexity theory, and
of particular importance in the space-bounded setting. Given a graph G and two
vertices, the task is to decide whether there is a path from the first vertex to the
second.

For undirected graphs the problem is denoted as USTCON and a beautifully
simple random walk algorithm due to Aleliunas et al. from 1979 [1] showed that
one can decide it in randomized logspace, RL. After a long line of work, Reingold
was able to derandomize the result in 2008 [2] and showed that USTCON is already
in deterministic logspace, L, and in fact complete for that class.

In the directed setting the problem is denoted as STCON and complete for non-
deterministic logspace, NL. The best known deterministic algorithm in terms of
space-complexity is due to Savitch from 1970 [3] and runs in space O(log2 n). Since
then, a lot of effort has been invested into improving this bound and for restricted
classes of graphs better bounds are known. For example for strongly-unambiguous
graphs, also called mangroves, for which the number of paths between any two nodes
is at most one, Allender and Lange [4] were able to beat Savitch’s upper bound by
presenting a deterministic O(log2 n/ log log n)-space algorithm. Due to a result of
Garvin et al. [5] their algorithm actually extends to the larger class of reach-few
graphs for which the number of paths to all nodes that are reachable from the first
one is polynomially bounded.

As our main contribution, we show that in the quantum setting we can further
improve on their bound for the restricted class of strongly-few graphs for which
the number of paths between any two nodes is polynomially bounded. So far,
mostly linear algebraic problems have been considered for space-bounded quantum
algorithms. Ta-Shma showed in [6] how to space-efficiently approximate the inverse
of a well-conditioned matrix. His algorithm runs in bounded error quantum logspace,
BQL, if the condition number of the matrix κ is polynomial. This improved on
the best known classical procedure for matrix inversion due to Csanky [7] running

1

2

in space O(log2 n). Unfortunately, most common matrices associated to directed
graphs have exponential condition number, and so Ta-Shma’s algorithm does not
put STCON in BQL. However, for strongly-few graphs we find that we can do
so by considering the operator L# = I − A where I is the identity and A the
adjacency matrix of a digraph. We call that operator the counting Laplacian. A
spectral analysis of it shows that it has polynomial condition number if and only if
the underlying graph is strongly-few. This allows us to prove our main result.

Theorem 1. STCON restricted to strongly-few graphs can be decided in BQL.

The thesis is structered as follows. In the first chapter we define our compu-
tational model and give an overview of central complexity classes, in particular
classes related to unambiguity and fewness. We further discuss the use of classical
random walks on directed and undirected graphs to decide connectivity. In the
second chapter we give a high-level description of the quantum algorithm for linear
system solving due to Harrow, Hassidim and Lloyd [8] which is usually referred to
as the HHL-algorithm. This algorithm is at the heart of the matrix inversion result
from Ta-Shma. The reader who is already familiar with it or not interested in the
quantum part of this thesis may skip this part. In the third and last chapter we
prove our main result that STCON restricted to strongly-few graphs is in BQL.
We also make a comparison of the resulting procedure with random walks.

Acknowledgements

First and foremost, I want to express my sincere appreciation to my supervisors, Dr.
Simon Apers and PD. Dr. Kord Eickmeyer, for entrusting me with this fascinating
topic. I am especially grateful to Dr. Apers for the insightful weekly discussions that
significantly contributed to my understanding of the subject, and to PD. Dr. Kord
Eickmeyer for his facilitation of my stay abroad during the thesis. Their guidance
has been invaluable to the successful completion of this thesis. Furthermore, I would
like to offer my special thanks to my family for their continuous support throughout
my life.

Chapter 1

Preliminaries

1.1 The Computational Model

In this section we define our computational model and introduce some space-bounded
complexity classes. All of the complexity classes that we define are classes of promise
problems. Promise problems are a generalization of decision problems where the
input is chosen from a subset of all possible binary strings. They allow to more
accurately capture the computational complexity of some tasks because verifying
whether a given input satisfies a promised property can be hard, in fact it can even
be harder than the actual task one is interested in.

Formally, a promise problem is a pair L = (Lyes, Lno), where Lyes, Lno ⊆ {0, 1}∗

are sets of binary strings satisfying Lyes ∩ Lno = ∅. The strings in Lyes are called
yes-instances and the strings in Lno are called no-instances. The union Lyes ∪ Lno

is called the promise. A machine solving a promise problem is only required to
distinguish the yes- and no-instances. It is allowed to do whatever on inputs outside
the promise. Of key interest to us in this thesis are the following two problems.

USTCON

Input: Adjacency matrix A of an undirected graph G with nodes v1, ..., vn.
Output: 1 if there is a path from v1 to vn, 0 otherwise.

STCON

Input: Adjacency matrix A of a directed graph G with nodes v1, ..., vn.
Output: 1 if there is a path from v1 to vn, 0 otherwise.

A space-bounded deterministic Turing machine (DTM) acts according to a tran-
sition function δ on three semi-infinite tapes: A read-only tape where the input is

3

4 CHAPTER 1. PRELIMINARIES

stored, a read-and-write work tape and a uni-directional write-only tape for the
output. The space-complexity is defined as the number of used cells on the work
tape. A function s : N → N is said to be space-constructible if there is a DTM M

that computes s(n) on any n-bit input in space O(s(n)). We restrict ourselves to
such space-bounds in the following.

A non-deterministic Turing machine (NTM) is similar to a DTM except that
it has two transition functions δ0 and δ1. At each step in time the machine non-
deterministically chooses to apply either one of the two. It is said to accept an input
x if there is a sequence of these choices so that it reaches an accepting state and it
is said to reject input x if there is no such sequence of choices.

This gives rise to the following complexity classes.

Definition 2. DSPACE(s(n)) (resp. NSPACE(s(n))) is the class of promise prob-
lems L = (Lyes, Lno) for which there exists a DTM (resp. NTM) M running in space
O(s(n)) such that

• (Completeness) for all x ∈ Lyes, we find that M accepts x and

• (Soundness) for all x ∈ Lno, we find that M rejects x.

Further, let Lk := DSPACE(logk n) and NL := NSPACE(log n).

We write L for L1. As is common, we somewhat overload the term in the
determinsitc case and say that a boolean function f is computable in DSPACE(s(n))

if there is a DTM running in space O(s(n)) that outputs f(x) on input x.
A probabilistic Turing machine (PTM) is a DTM with the ability to toss random

coins. This can be conveniently formulated by a fourth random-coins tape that is
uni-directional, read-only and initialized with random bits.

Instead of this random-coins tape, a quantum Turing machine (QTM) has a
fourth read-and-write quantum work tape. This tape is made up of qubits with
two tape-heads moving on it. The operations on the qubits are chosen from some
universal gate set, say {HAD,CNOT,T}. At each point in time the two heads
can either apply a gate from the gate set to the qubits below them or perform a
measurement to a projection in the standard basis. The space-complexity is given
by the used cells of the classical and of the quantum work tape. Note that every
universal gate set needs to contain a gate that acts on two or more qubits, making
two tape heads on the quantum tape mandatory.

This gives rise to the following probabilistic and quantum complexity classes.

1.1. THE COMPUTATIONAL MODEL 5

Definition 3. BSPACEa,b(s(n)) (resp. BQSPACEa,b(s(n))) is the class of promise
problems L = (Lyes, Lno) for which there exists PTM (resp. QTM) M running in
space O(s(n)) and time 2O(s(n)) such that

• (Completeness) for all x ∈ Lyes, we find P[M accepts x] ≥ a and

• (Soundness) for all x ∈ Lno, we find P[M accepts x] ≤ b.

We say that a is the completeness error and b is the soundness error. Further RL :=

BSPACE 1
2
,0(log n), BPL := BSPACE 2

3
, 1
3
(log n) and BQL := BQSPACE 2

3
, 1
3
(log n).

We again overload the terms and say that a boolean function is computable in
BSPACE(s(n)) (resp. BQSPACE(s(n))) if there is a PTM (resp. QTM) running in
space O(s(n)) that outputs f(x) on input x with bounded error.

Clearly, our definition of BQSPACE(s(n)) allows intermediate measurements.
It was recently shown in [9] that delaying all measurements until the end of the
computation does not weaken the computational model. Similarly, the specific
choice of the universal gate set does not alter the resulting complexity class due to
the space-efficient version of the Solovay-Kitaev theorem in [10].

Space-bounded computation is closely related to parallel computation. The
standard model for which are bounded-depth circuits. We define the most important
complexity classes below.

Definition 4. NCk is the class of promise problems solved by L-uniform polynomial-
size circuits of depth O(logk n) with fanin 2 where all gates are chosen from the
universal set {∧,∨,¬}. ACk is the same, except for unbounded fanin.

Lastly, let intDET denote the problem of computing the determinant of an n×n
n-bit integer matrix, as was introduced by Cook in [11]. The complexity class DET

is the collection of all problems that are NC1-reducible to intDET. Cook showed
that many natural linear algebraic problems are in fact DET-complete, that is
intDET, intMATINV (the problem of computing the inverse of an integer matrix),
intITMATPROD (the problem of computing the product of n integer matrices) and
intMATPOW (the problem of computing the first n powers of an integer matrix).

Fefferman and Remscrim defined poly-conditioned promise versions of these
problems in [9] and showed that all of them are complete for BQL.

See figure 1.1 for the known inclusions of all the introduced complexity classes.
Proof sketches for them can be found in the appendix.

6 CHAPTER 1. PRELIMINARIES

NC0 AC0 NC1 L RL

BPL

NL

BQL

L3/2

AC1

DET

NC2 L2

Figure 1.1: Inclusion diagram for space-bounded and related complexity classes.

1.2 Random Walks on Graphs

In this section we consider random walks on directed and undirected graphs. This
has two reasons. First, they are the natural classical approach to space-efficiently
solve connectivity. Essentially, the only required space of a random walk algorithm
is that of a timer to make sure that the algorithm halts at some point. Second,
we find a close corelation of when a random walk succeeds to decide connectivity
in RL and when the spectral properties of graph related matrices are well-behaved
and also allow for a direct BQL-procedure. We start with a short introduction to
the topic.

A random walk on a (directed or undirected) graph G = (V,E) starts from
some initial vertex (sampled from some distribution p0 over V represented by a
row vector) and at every timestep jumps uniformly at random to one of its (out-
)neighbouring vertices. This gives rise to a finite Markov Chain (Xt)t∈N on the state
space V with transition probability matrix P such that

P (i, j) = P[Xt+1 = j|Xt = i] =

 1
d(i)

if (i, j) ∈ E,

0 otherwise.

Here d(i) denotes the (out-)degree of vertex i ∈ V . The distribution after t steps of
the random walk is pt = p0P

t.

The Markov Chain is said to be irreducible if the underlying graph is strongly
connected, that is every vertex is reachable from every other vertex. If this is the
case, then there is a unique stationary distribution π satisfying πP = π. Further-
more, if the Markov Chain is also aperiodic, that is there is some k ∈ N∗ such
that P k(i, j) > 0 for all (i, j) ∈ V 2, then every initial distribution converges to the

1.2. RANDOM WALKS ON GRAPHS 7

stationary one, i.e.

p0P
t t→∞−−−→ π.

The time it takes to get close to the stationary distribution is quantified by the
mixing time. Formally, this is

MT(ε) := min{t ∈ N : ||p0P t − π||TV ≤ ε ∀p0}

where || · ||TV denotes the total variation distance. For two distributions µ and ν

over V the total variation distance is given by

||µ− ν||TV := max
A⊆V

|µ(A)− ν(A)| = 1

2
||µ− ν||1.

We make two remarks about the mixing time. First, in the minimum of the defini-
tion it suffices to consider only initial distributions concentrated at a single node,
i.e. if for some t ≥ 0 we find ||eiP t−π||TV ≤ ε for all i ∈ V , then already MT(ε) ≤ t.
Here ei denotes the row vector that is 1 only at index i and 0 everywhere else. Sec-
ond, choosing a different ε, as long as ε < 1/2, changes the value of the mixing time
only by a constant factor. It is thus a convention to fix ε = 1

4
whenever referring to

‘the’ mixing time.

1.2.1 The undirected case

In this subsection we show that USTCON ∈ RL as in [1]. For this, we first observe
that for undirected connected graphs the stationary distrbution is given by

π(i) =
d(i)

2|E|
.

We define the hitting time HT(i, j) as the expected number of steps until a
random walk starting from i reaches j,

HT(i, j) := E[min{t ≥ 0 : Xt = j}|X0 = i].

The return time from i to itself is given by

HT+(i, i) := E[min{t > 0 : Xt = i}|X0 = i].

Further, we define the cover time from i, CT(i), as the expected number of steps

8 CHAPTER 1. PRELIMINARIES

until a random walk starting from i has visited all vertices,

CT(i) := E[min{t ≥ 0 : ∪t
k=0Xk = V }|X0 = i].

The cover time of the graph is then given by the cover time from the worst-possible
starting node, i.e. CT(G) := maxi∈V CT(i). Clearly, the cover time is an upper
bound for the hitting time, HT(i, j) ≤ CT(G) for all (i, j) ∈ V 2.

We find that the cover time of any undirected connected graph is polynomial.

Lemma 5. Every undirected connected graph G = (V,E) with n = |V | vertices has
cover time CT(G) = O(n3). More precisely, it is bounded by

2 · (|V | − 1) · 2|E| ≤ 2 · n(n− 1)2.

Proof. The return time from any node i to itself is given by HT+(u, u) = 2|E|
d(u)

which
is the reciprocal of its stationary probability. Further, the expected return time can
also be calculated via the hitting time from every neighbour j to i:

2|E|
d(i)

= HT+(i, i) = 1 +
1

d(i)

∑
{i,j}∈E

HT(j, i).

It follows that for any edge {i, j} ∈ E the hitting time from i to j is bounded by
HT(i, j) < 2|E|.

Now let T be a spanning tree of G. Note that any traversal of T need not visit
an edge more than twice and is thus made up of no more than 2n − 2 nodes. Let
(v0, ..., v2n−2 = v0) be a traversal of T . We find

CT(G) ≤ HT(v0, v1) + ...+HT(v2n−3, v2n−2) < (2n− 2) · 2|E|.

This asymptotic bound is tight as can be seen by the following example.

Example 6. The lollipop graph of 2n−1 nodes has cover time Θ(n3). The graph is
made up of a path of length n that is connected at one end to a complete component
of n nodes, compare figure 6. The hitting times of the graph can be calculated by
solving a linear system of recurrences because for each pair of nodes (i, j) ∈ V 2 we
have

HT(i, j) = 1 +
1

d(i)

∑
u∈N(i)

HT(u, j)

where N(i) = {u ∈ V : {i, u} ∈ E} is the neighborhood of vertex i.

1.2. RANDOM WALKS ON GRAPHS 9

Figure 1.2: The lollipop graph for n = 5.

We do not solve this system here but instead give an intuitive explanation for the
cover time being cubic. If we start a random walk at any node from the complete
component except for the one connected to the path, then the probability to reach
the single node that is part of the path is 1/(n − 1), so we need roughly n trials
until we get access to it. Once we are located at that node, the probability to jump
into the path and not back to the complete component is 1/n, making another n
trials necessary. And finally, the expected number of attempts to reach the other
end of the path before going back to the end the walk started in is n again. This
follows from the well-known problem called Gambler’s Ruin [12]. So, all in all we
need roughly n3 steps of the random walk until we hit the leftmost node of the path.

This polynomial bound on the cover time suffices to show

Corollary 7. USTCONN ∈ RL.

Proof. Given an undirected graph G with nodes v1, ..., vn, we start a random-walk
from v1 and keep a counter for every step we take. After 2n3 steps we stop and
return 1 if we reached t at some point, otherwise we return 0. The required space
for the counter is log(2n3) = O(log n). If v1 and vn are connected, then the hitting
time is bounded by HT(v1, vn) ≤ CT(G) < 2n3 and we know that the probability
to reach vn before 2n3 steps is greater than 1/2 by Markov bound.

As mentioned in the introduction, this result has been derandomized by Reingold
who showed that USTCON is already contained in L.

We now define the (combinatorial) Laplacian of G as L := D − A where
D = diag(d(v1), ..., d(vn)) is the diagonal (out-)degree matrix and A is the adja-
cency matrix of some undirected graph G. Analyzing its eigenvalues will give a
direct BQL-procedure to decide USTCON. For this, we first define the vertex-edge

10 CHAPTER 1. PRELIMINARIES

incidence matrix B ∈ {0, 1}|V |×|E| via

B(v, e) :=

1 if vertex v is incident to edge e,

0 otherwise.

It is easily verified that L = BTB so that for all (column) vectors x ∈ Rn,
xTLx =

∑
(i,j)∈E(xi − xj)

2. Thus, the combinatorial Laplacian is positive semi-
definite. Furthermore, we compute that the all ones vector 1 is part of its kernel
L1 = 0. In fact, the dimension of the kernel is equal to the number of connected
components. This follows in particular from the following lower bound on the second
smallest eigenvalue of L for a connected graph taken from [13].

Lemma 8. Let G be an undirected graph G that is connected and has diameter
diam(G) := maxu,v∈V d(u, v). Then the second smallest eigenvalue of the combina-
torial Laplacian L = D − A is lower bounded by

λn−1 ≥
1

n · diam(G)
.

Proof. Let x be the corresponding eigenvector to the eigenvalue λn−1 and choose
u ∈ V such that |xu| = maxi∈V |xi|. Since the Laplacian L is symmetric, we find
that x is orthogonal to the all ones vector 1 from the kernel of L, i.e.

∑
i∈V xi = 0.

From this we know that there must be some node v such that xu · xv < 0. Now let
P be a path from u to v of length T ≤ diam(G). We obtain

λn−1 =
xTLx
||x||2

=

∑
{i,j}∈E(xi − xj)

2∑
i∈V x

2
i

≥
∑

(i,j)∈P (xi − xj)
2

nx2u

≥ (xu − xv)
2/T

nx2u

≥ 1

nT
≥ 1

n · diam(G)

where the second inequality follows from Cauchy-Schwarz applied to the T -dimensional
all ones vector and the vector containing as entries the differences (xi − xj) for
(i, j) ∈ P .

Ta-Shma showed in [6, theorem 5.1] that if the eigenvalues of a hermitian matrix
are polynomially bounded, then we can approximate them with inverse polynomial

1.2. RANDOM WALKS ON GRAPHS 11

accuracy and estimate their multiplicities in BQL. The last lemma assures that
the smallest non-zero eigenvalue of the combinatorial Laplacian L of any undirected
graph has inverse polynomial distance from 0. Hence, the accuracy is sufficient and
we can estimate the dimension of the kernel of L to count the number of connected
components. In particular, this allows to decide USTCON because counting the
components before and after adding an edge between v1 and vn allows to decide
whether they belong to the same component.

1.2.2 The directed case

Now let G = (V,E) with n = |V | vertices be a directed graph with unique stationary
distribution π and probability transition matrix P . Following Reingold et al. [14]
we define a normalized inner product on Rn

⟨x, y⟩π :=
∑
i∈V

x(i) · y(i)
π(i)

.

This gives rise to a norm ||x||π :=
√

⟨x, x⟩π and allows us to make the following

Definition 9. The spectral expansion of G is defined as

λπ(G) := max
⟨x,π⟩π=0

||xP ||π
||x||π

.

The spectral expansion coincides with the second largest eigenvalue λ2(P) (in
absolute value) in the case that the underlying graph is undirected. In the directed
case, P need not be diagonalizable and λπ(G) equals the square root of the second
largest eigenvalue (in absolute value) of P̃P where P̃ (i, j) = π(i)P (i, j)/π(j). The
spectral expansion is closely related to the mixing time. If it is small, then the
Markov Chain mixes quickly:

Lemma 10. Let P be irreducible and aperiodic, and let p0 be any initial distribution
over V . Then

||p0P t − π||π ≤ λπ(G)
t||p0 − π||π.

A well-known method to analyze the mixing time of a Markov Chain is by
considering its bottlenecks. This is formalized in the definition below.

Definition 11. The ergodic flow from a set A ⊆ V to B ⊆ V is defined as
Q(A,B) :=

∑
x∈A,y∈B π(x)P (x, y). The conductance of a set A ⊆ V is defined

12 CHAPTER 1. PRELIMINARIES

as

Φ(A) :=
Q(A,AC)

π(A)
=

∑
x∈A,y/∈A π(x)P (x, y)∑

x∈A π(x)
.

Further, the conductance of G is Φ := minπ(A)≤ 1
2
Φ(A).

The conductance gives the following lower bound on the mixing time taken from
[12].

Lemma 12. Let P be irreducible and aperiodic. Then the mixing time is lower
bounded by MT(1

4
) ≥ 1

4Φ
.

Proof. For all A ⊆ V we have

Pπ[X0 ∈ A,Xt ∈ AC] ≤
t∑

k=1

Pπ[Xk−1 ∈ A,Xk ∈ AC]

= t · Pπ[X0 ∈ A,X1 ∈ AC]

= t ·Q(A,AC).

Dividing by π(A) gives

Pπ[Xt ∈ AC |X0 ∈ A] ≤ tΦ(A).

Hence, there is at least on x ∈ A such that

P t(x,A) ≥ 1− tΦ(A).

From this we find

||pt − π||TV ≥ |pt(A)− π(A)| ≥ 1− tΦ(A)− π(A)

which in the case of π(A) ≤ 1
2

is smaller or equal to 1
4

only if t ≥ 1
4Φ(A)

. Maximizing
over all A with π(A) ≤ 1

2
thus gives us the desired bound.

The conductance also gives a very powerful upper bound on the mixing time via
the following lemma. We refer to [14] for a proof .

Lemma 13. Let P be irreducible and strongly aperiodic, that is P (i, i) ≥ 1/2 for
all i ∈ V . Then

λπ(G) ≤ 1− Φ2

2
.

1.2. RANDOM WALKS ON GRAPHS 13

Two difficulties arise for deciding connectivity on directed graphs that do not
appear for undirected graphs.

1. The stationary distribution of an irreducible component can have negligible
weight on some nodes. This means that even if we are able to sample from this
stationary distribution π (or a distribution that is close to it), we might need
an unfeasible amount of samples to learn whether or not a node v ∈ supp(π).

2. The mixing time need not be polynomial so that we cannot sample from the
stationary distribution in reasonable time.

For an example of the first point see figure 1.3. Let P denote the probability
transition matrix of the given graph G. It is easy to verify that the stationary
distribution of G is π = [1

2
, 1
4
, ..., 1

2n−1 ,
1

2n−1]. A random walk that starts at node 1

and runs for a polynomial number of steps is thus not expected to find that 1 and n
are connected. On the other hand, interestingly, the mixing time is constant. One
easily verifies that after 2 steps of the random walk from any initial vertex i, we
have ||eiP 2 − π||TV ≤ 1

4
.

For an example of the second point consider figure 1.4 of a digraph G′ with
probability transition matrix P ′. Let π still denote the stationary distribution of
P from figure 1.3 and let π(rev) be equal to π but in reverse order, i.e. π(rev) =

[1
2n−1 ,

1
2n−1 , ...,

1
4
, 1
2
]. The stationary distribution of P ′ is then given by π′ = 1

2
[π, π(rev)].

We find for the conductance of [n]

Φ([n], [2n]\[n]) = π′(n)P ′(n, n+ 1)

π′([n])
=

1/2n+1

1/2
=

1

2n
.

Hence, by lemma 12, the mixing time is exponential. Furthermore, we find that the
second largest singular value of P ′ is exponentially close to 1. To see this, consider
the vector x′ := 1

2
[π,−π(rev)] that is orthogonal to π′ and has norm ||x′||2 ≥ 1/4.

We find that

xP =
1

2
[π{1,...,n−1}, 0, 0,−π(rev)

{2,...,n}]

so that

s2(P)
2 = max

⟨x,π′⟩=0

||xP ||22
||x||22

≤
||x′||22 − 2 ·

(
1

2n−1

)2
||x′||22

= 1− 2−Ω(n).

14 CHAPTER 1. PRELIMINARIES

1 2 3 · · · n

Figure 1.3: DigraphG with inverse exponential stationary probabilities but constant
mixing time.

1 2 3 · · · n n+1 · · · 2n-2 2n-1 2n

Figure 1.4: Digraph G′ with exponential mixing time.

1.3 Unambiguity and Fewness

The notions of unambiguity and fewness are concerned with counting the number
of paths in a graph. This really only make sense for graphs that are acyclic (DAGs).

Luckily, we can assume any graph to be of that type by a simple reduction.

Lemma 14. STCON is AC0-reducible to STCON restricted to DAGs.

Proof. Let G be a digraph with nodes v1, ..., vn that potentially contains a cycle.
Further, let T ≤ n−1 be some bound on the diameter of G. We construct a layered
graph G′ corresponding to a clocked walk on G of time T . G′ contains (T +1)-many
layers with n nodes each. The nodes of the t-th layer are labelled v

(t)
1 , ..., v

(t)
n . We

now add two types of edges for every t ∈ {0, ..., T − 1}. First, for all edges (vi, vj)

in G, we add an edge
(
v
(t)
i , v

(t+1)
j

)
allowing the walk to take that edge at time t.

Second, we add outgoing edges from v
(t)
n to v(t+1)

n allowing the walk to wait on the
last node. See figure 1.5 for an example of this reduction.

Clearly, G′ is acyclic because edges go only up in layers and never down. And
there is a path from v1 to vn in G if and only if there is one from v

(0)
1 to v(T)

n in G′.
The reduction can be implemented in AC0.

There are three notions of unambiguity and fewness that have been studied in
the literature. We capture them in the following definition.

1.3. UNAMBIGUITY AND FEWNESS 15

v1 v2 v3

v
(0)
1 v

(0)
2 v

(0)
3

v
(1)
1 v

(1)
2 v

(1)
3

v
(2)
1 v

(2)
2 v

(2)
3

Figure 1.5: On the left a digraph G containing a cycle and on the right the con-
structed layered DAG G′.

Definition 15. A DAG G with nodes V = {1, ..., n} is called

1. unambiguous if there is at most one path from 1 to n,

2. reach-unambiguous if there is at most one path from 1 to every node that is
reachable from 1, and

3. strongly unambiguous, or a mangrove, if there is at most one path between
any two nodes.

See figure 1.6 for examples. Relaxing the restriction on the number of paths to at
most polynomially many gives rise to three fewness notions: G is called

1. few-unambiguous if there are at most polynomially many paths from 1 to n,

2. reach-few-unambiguous (for short reach-few) if there are at most polynomially
many paths from 1 to every node that is reachable from 1, and

3. strongly-few-unambiguous (for short strongly-few) if there are at most polyno-
mially many paths between any two nodes.

1

2 3

4 5 6

1 2

3 4

5 6 7

1 2

3 4 5

6 7 8

Figure 1.6: On the left an unambiguous, in the middle a reach-unambiguous and
on the right a strongly-unambiguous graph. From [15].

The previous definition naturally gives rise to six complexity classes which are
semantically defined as the classes of problems accepted by NL-machines for which

16 CHAPTER 1. PRELIMINARIES

L StUL StFewL
ReachFewL
= ReachUL

UL FewL NL

BQL DSPACE(log2 n
log logn

)

Figure 1.7: Inclusion diagram for unambiguity and fewness complexity classes.

the configuration graph satisfies the respective unambiguity or fewness conditions.
We list them in inclusion order

• strongly-unambiguous logspace, StUL,

• strongly-few logspace, StFewL,

• reach-unambiguous logspace, ReachUL,

• reach-few logspace, ReachFewL,

• unambiguous logspace, UL,

• few logspace, FewL.

Except for the inclusions StFewL ⊆ ReachUL and ReachFewL ⊆ UL all
of them follow directly from the definition. As mentioned in the introduction,
Allender and Lange showed in [4] that there is a DSPACE(log2 n/ log log n) algo-
rithm solving STCON on mangroves. In fact, they mention themselves that their
algorithm also works for reach-unambiguous graphs. Furthermore, Garvin et al.
showed in [5] that ReachUL = ReachFewL. Both of their results thus imply
ReachFewL = ReachUL ⊆ DSPACE(log2 n/ log log n). Last but not least, in
chapter 3 we show that StFewL ⊆ BQL. Putting all together we obtain the
inclusion diagram depicted in figure 1.7.

Chapter 2

HHL-algorithm

In this chapter we give some background on Ta-Shma’s result that approximately
inverting well-contioned matrices is in BQL. For a rigorous treatment, we refer
to his paper [6]. As is common in the quantum setting, we use the bra-ket no-
tation. Loosely speaking, a ket |x⟩ is a normalized column vector and a bra ⟨x|
is a normalized row vector. Ta-Shma’s work builds on the HHL-algorithm due to
Harrow, Hassidim and Lloyd [8] that we sketch in the following. The algorithm
solves a quantum version of the κ-conditioned linear system problem (κ-QLSP) for
hermitian matrices.

κ-QLSP for hermitian matrices

Input: A hermitian matrix H ∈ Cn×n with singular values satisfying
1 ≥ s1(H) ≥ ... ≥ sn(H) ≥ 1/κ and an n-dimensional state |b⟩.

Output: An approximation of a state |x⟩ that is proportional to H−1 |b⟩.

The algorithm uses two subroutines: One for Hamiltonian Simulation and one
for Quantum Phase Estimation (QPE). We explain them in the following sections.

2.1 Hamiltonian Simulation

Hamiltonian Simulation is the problem of outputting a circuit that approximates
eiH given a hermitian matrix H.

Hamiltonian Simulation

Input: A hermitian matrix H ∈ Cn×n with ||H|| ≤ 1.
Output: A circuit U that ε-approximates eiH , i.e. such that ||U − eiH || ≤ ε.

17

18 CHAPTER 2. HHL-ALGORITHM

Note that hermitian matricesH ∈ Cn×n are diagonalizable and all its eigenvalues
are real. Hence, we can write any such matrix in its eigenbasis H =

∑n
j=1 λj |hj⟩ ⟨hj|

and we find that eiH =
∑n

j=1 e
iλj |hj⟩ ⟨hj| is unitary. Ta-Shma showed how to

compute the desired circuit in DSPACE(log n+ log ε−1).

2.2 Quantum Phase Estimation

Eigenvalues of unitary operators have unit modulus and can therefore be charac-
terized by their phase. If |ψ⟩ is an eigenvector of a unitary U , then there is some
θ ∈ [0, 1] such that U |ψ⟩ = e2πiθ |ψ⟩. Quantum Phase Estimation is the problem of
determining the phase θ given access to U and |ψ⟩.

QPE

Input: A unitary U ∈ Cn×n and a corresponding eigenvector |ψ⟩.
Output: An approximation of the phase θ ∈ [0, 1] of the eigenvector |ψ⟩.

The circuit solving it uses the Quantum Fourier Transform (QFT) Fn : Cn → Cn.
This is a fundamental building block of many quantum algorithms. It is the unitary
transformation that maps any vector from the computational basis to its so called
Fourier mode

Fn |k⟩ :=
1√
n

n−1∑
j=0

ωkj
n |j⟩

where ωn = e2πi/n denotes the n-th root of unity.

See e.g. [16] for a proof that the QFT can be implemented by a circuit made
up of Θ(log2 n) simple gates. It is straightforward to see that this circuit is in fact
L-uniform.

Now suppose we have access to a unitary U and one of its eigenvectors |ψ⟩ with
unknown phase θ. For simplicity, we assume that nθ is an integer. The following
circuit allows to determine the phase θ. It works on the product space of two
registers: A phase estimation register |·⟩E and an input register |·⟩I .

|0⟩E Fn F †
n |nθ⟩E

|ψ⟩I cU |ψ⟩I

2.3. THE HHL-CIRCUIT 19

Here the cU -gate is an application of U on the input register conditioned on the
value of the estimation register. It maps any state |j⟩E |ψ⟩I to U j |j⟩E |ψ⟩I .

Let us analyze step by step what the circuit does to the initial state

|0⟩E |ψ⟩I
FN7−−→ 1√

n

n−1∑
j=0

|j⟩E |ψ⟩I

cU7−→ 1√
n

n−1∑
j=0

U j |j⟩E |ψ⟩I =
1√
n

n−1∑
j=0

e2πiθj |j⟩E |ψ⟩I =
1√
n

n−1∑
j=0

ωnθj
n |j⟩E |ψ⟩I

F †
n7−→ |nθ⟩E |ψ⟩I .

So at the end of the computation we find the phase (scaled by n) in the first register.
We note at this point that if we are given a hermitian matrixH =

∑n
j=1 λj |hj⟩ ⟨hj|,

then the phases of the unitary eiH =
∑n

j=1 e
iλj |hj⟩ ⟨hj| correspond to the eigenval-

ues λj of H. Hence, the QPE circuit applied to eiH allows us to create a state
corresponding to the eigenvalues of H. This can be used to simply approximate
the spectrum of H or, as we do in the following, to manipulate the eigenvalues to
implement matrix operations.

2.3 The HHL-circuit

We now have all the tools we need to describe the circuit solving the κ-QLSP.
Suppose we have access to a hermitian n × n matrix H =

∑n
j=1 λj |hj⟩ ⟨hj| that

satisfies 1 ≥ s1(H) ≥ ... ≥ sn(H) = 1
κ

and a state |b⟩ and we want to solve the linear
systemHx = |b⟩. For simplicity, let us assume that we can space-efficiently compute
a circuit that exactly implements U = eiH instead of just an approximation. Then
the following circuit solves the κ-QLSP. It works on three registers: An ancillary
qubit |·⟩A, an eigenvalue estimation register |·⟩E of size ⌈log κ−1⌉ and an input
register |·⟩I of size ⌈log n⌉.

|0⟩A cR |0⟩A or |1⟩A

|0⟩E Fn F †
n Fn F †

n |0⟩E

|b⟩I cU cU † |x⟩I or ...

QPE QPE−1

20 CHAPTER 2. HHL-ALGORITHM

Here the cR-gate denotes a conditioned rotation mapping

|0⟩A |nλ⟩E 7→

 1

κλ
|0⟩A +

√
1−

(
1

κλ

)2

|1⟩A

 |nλ⟩E .

Rewriting |b⟩ =
∑n

j=1 βj |hj⟩ in the eigenbasis of H, we again analyze step by
step how the initial state evolves

|0⟩A |0⟩E |b⟩I =
n∑

j=1

βj |0⟩A |0⟩E |hj⟩I

QPE7−−→
n∑

j=1

βj |0⟩A |nλj⟩E |hj⟩I

cR7−→
n∑

j=1

βj

 1

κλj
|0⟩A +

√
1−

(
1

κλj

)2

|1⟩A

 |nλj⟩E |hj⟩I

QPE−1

7−−−−→
n∑

j=1

βj

 1

κλj
|0⟩A +

√
1−

(
1

κλj

)2

|1⟩A

 |0⟩E |hj⟩I .

If the measurement outcome is |0⟩A at the end of the computation, the input-register
collapses to a state proportional to

∑n
j=1

βj

λj
|hj⟩I , i.e. proportional to the solution

vector x. Thus, we can repeatedly run the circuit until we measure |0⟩A to obtain
the desired state. In fact, estimating the probability of outcome |0⟩A even allows us
to approximate the norm ||x||.

Ta-Shma further shows that using quantum state tomography, we can approxi-
mately learn the i-th column of H−1 by solving the κ-QLSP for input states |b⟩ = |i⟩
multiple times.

2.4 The general non-hermitian case

So far, we only considered hermitian matrices. The HHL-algorithm also works for
arbitrary regular matrices. This is because we can turn any A ∈ Cn×n into a
hermitian matrix H = H(A) whose inverse is closely related to that of A,

H :=

[
0 A

A† 0

]
, H−1 =

[
0 (A†)−1

A−1 0

]
.

2.4. THE GENERAL NON-HERMITIAN CASE 21

Thus, from the inverse of H we can read of the inverse of A. Furthermore, we
find that the singular values of A directly correspond to the eigenvalues of H.
In particular, H is poly-conditioned, that is its singular values satisfy poly(n) ≥
s1(H) ≥ ... ≥ sn(H) ≥ 1/poly(n), if and only if A is.

Lemma 16. The eigenvalues of H are ±s1(A), ...,±sn(A).

Proof. The eigenvalues of H correspond to the solutions of the equation λI2n −
H(A) = 0. We find that the determinant of the left side is equal to

det

([
λIn −A
−A† λIn

])
· det

([
In λ−1A

0 In

])
︸ ︷︷ ︸

=1

= det

([
λIn 0

−A† λIn − λ−1A†A

])

= det (λIn) · det
(
λ−1(λ2In − A†A)

)
= det

(
λ2In − A†A

)
which is equal to 0 if and only if λ = ±si(A) for some i ∈ [n].

Chapter 3

Connectivity in Quantum-Logspace

In this section, we prove our main result that STCON restricted to strongly-few
graphs can be decided in BQL.

For this, let us cite the main result of Ta-Shma [6].

Theorem 17. Fix ε(n), ζ(n) > 0. There exists a BQSPACE(O(log n + log ε−1 +

log ζ−1)) algorithm that given an n× n matrix A with 1 ≥ s1(A) ≥ ... ≥ sn(A) ≥ ζ,
outputs with probability 1− ε a matrix approximating A−1 with ε accuracy in the l1
norm.

We can actually also handle the case where the largest singular value is greater
than 1.

Corollary 18. Fix ε(n), ζ(n) > 0 and Z(n) ≥ 1. There exists a BQSPACE(O(log n+

log ε−1+log ζ−1+logZ)) algorithm that given an n×n matrix A with Z ≥ s1(A) ≥
... ≥ sn(A) ≥ ζ, outputs with probability 1 − ε a matrix approximating A−1 with ε
accuracy in the l1 norm.

Proof. By scaling the matrix A with factor 1/Z we obtain for its singular values:

1 ≥ s1

(
1

Z
A

)
≥ ... ≥ sn

(
1

Z
A

)
≥ ζ

Z
.

Then using theorem 17, we can approximate the inverse
(
1
Z
A
)−1

= ZA−1 up to ε ·Z
accuracy. Rescaling the result with 1/Z then gives an approximation of A−1 with ε
accuracy.

It is often difficult to directly analyze singular values. We observe that we can
avoid doing so if we know the l∞ norm of the matrix and of its inverse.

22

3.1. THE COUNTING LAPLACIAN 23

Lemma 19. If ||A||∞ and ||A−1||∞ of an n × n matrix are well-defined and poly-
nomially bounded, then the matrix is poly-conditioned and we can approximate the
entries of A−1 up to 1/poly(n) accuracy in BQL.

Proof. Recall that the spectral norm and the l∞-norm are equivalent. In fact, we
find that one is within a polynomial factor of the other:

1√
n
||A||∞ ≤ ||A||2 ≤

√
n||A||∞.

Hence, if ||A||∞ and ||A−1||∞ are polynomially bounded, then so are s1(A) = ||A||2
and 1/sn(A) = ||A−1||2. Thus, we find that in this case the functions ε−1, ζ−1 and
Z from corollary 18 are all polynomially bounded and Ta-Shma’s algorithm runs in
BQL.

We are going to apply this result in the following two sections.

3.1 The counting Laplacian

Definition 20. For a digraph G with adjacency matrix A, the counting Laplacian
is L# := I − A.

Lemma 21. If G is a DAG with n = |V | vertices, then the counting Laplacian L#

is invertible and we find

(L#)−1 = (I − A)−1 = I + A+ A2 + · · ·+ An−1.

So that (L#)−1(i, j) equals the number of paths from i to j.

Proof. Let G be a DAG with n vertices. Then there is no path in G of length n or
higher. For A the adjacency matrix of G this translates to An = 0, i.e. A is nilpotent
of order at most n. Hence, the Neumann-series

∑
k∈NA

k = I +A+A2 + ...+An−1

becomes a sum and converges so that the rest of the statement follows from basic
operator theory.

The inverse of the previous lemma is not true, i.e. if a graph contains a cycle this
does not imply that the counting Laplacian L# is singular. However, the entries of
the inverse do not seem to contain any helpful information then. We immeadiately
obtain

Corollary 22. The counting Laplacian L# of a DAG G is poly-conditioned if and
only if G is strongly-few.

24 CHAPTER 3. CONNECTIVITY IN QUANTUM-LOGSPACE

1

2

3

4

5

6

... 2n-1

2n

Figure 3.1: Hard instance for a random walk.

Using corollary 19 this gives our main result.

Theorem 23. STCON restricted to strongly-few graphs can be decided in BQL.

Example 24. Consider the directed tree in figure 3.1. A classical random walk has
probability 1/2n−1 to hit node 2n starting from 1. A counter to keep track of the
needed attemps to reach 2n would thus exceed reasonable space bounds. On the
other hand, the number of paths between any two nodes is polynomially bounded,
in fact it is either 0 or 1. Hence, we can invert L# using Ta-Shmas algorithm in
BQL and decide if 2n is reachable from 1 by checking whether (L#)−1

1,2n = 1.

The example shows that the counting Laplacian allows to solve connectivity
for any directed tree. This includes the tree instances from Poon in [17] used to
show the space lower bound of Ω(log2 n

log logn
) in the restricted NNJAG-model. In this

model algorithms start with some number of pebbles at the first node and are only
allowed to move them along edges or jump them to each other’s location. But in
fact connectivity for trees can already be solved in L as is proved in the appendix
A.12. It is one of the main criticisms of the NNJAG-model that it does not allow
efficient tree-traversals. For the instances used to show the tight space lower bound
of Ω(log2 n) [18] in the NNJAG-model, our approach with the counting Laplacian
fails.

At a first glance, it may seem that undirected edges are problematic for our
approach. If we use lemma 14 to construct a layered DAG starting from a graph
G with two or more adjacent undirected edges, then the DAG will contain expo-
nentially many paths. This follows because a walk on G has exponentially many
possibilities to wait on the node where the undirected edges intersect by walking the
edges back and forth. However, since USTCON is in L we can avoid this problem.
Instead of directly reducing the graph to a DAG, we can first contract all undi-
rected components into single nodes and then invert the counting Laplacian of the
resulting graph. This way, we can decide STCON in BQL for graphs containing
undirected edges as long as the resulting graph after contraction is strongly-few.

3.2. THE RANDOM-WALK LAPLACIAN 25

1

2

3

4

5

6

1 2 3 4 5 6

Figure 3.2: On the right the condensation of the graph on the left.

We remark that the contraction of undirected components corresponds to com-
puting the condensation of a graph where all strongly connected components contain
only undirected edges.

Definition 25. The condensation of a graph G, SC[G], is obtained from G by
identifying all vertices of the same strongly connected component as a single node
(cf. figure 3.2).

Note that the condensation is always a DAG.

3.2 The random-walk Laplacian

Definition 26. For a graph G with adjacency matrix A the random-walk Laplacian
is Lrw := I − S where S := D+A.

Here D+ denotes the pseudo-inverse of the out-degree matrix D, i.e. D+(i, i) =

1/d(i) if d(i) > 0, D+(i, i) = 1 if d(i) = 0 and D(i, j) = 0 if i ̸= j. It should
be noted that S need not be a stochastic matrix if it contains sinks, i.e. vertices
without outgoing edges. In general it is substochastic, meaning for all i ∈ [n] :∑

j S(i, j) ≤ 1.

Lemma 27. Let G be a digraph so that the expected number of steps until a random
walk hits a sink are finite, then the random-walk Laplacian Lrw is invertible and we
find

(Lrw)−1 = (I − S)−1 =
∑
k∈N

Sk.

So that (Lrw)−1(i, j) equals the expected number of visits to a non-sink j of a random
walk from node i.

Proof. Let G be a digraph so that the expected number of steps until a random
walk hits a sink are finite. Further, let (Xt)t∈N be a Markov Chain corresponding to
a random walk on G (with probability transition matrix P where we add self-loops

26 CHAPTER 3. CONNECTIVITY IN QUANTUM-LOGSPACE

1

2

3

4

5

6

...

2n-1

2n

Figure 3.3: DAG with exponentially many paths.

to sinks so that the chain is well-defined). We find that

∞∑
k=0

Sk(i, j) =
∞∑
k=0

P[Xk = j|X0 = i]

=
∞∑
k=0

E
[
1{Xk=j}|X0 = i

]
= E

[
∞∑
k=0

1{Xk=j}

∣∣∣X0 = i

]
<∞

converges for all (i, j) ∈ V 2 and is indeed equal to the expected number of visits
to node j of a random walk from node i. Hence, Lrw = I − S is invertible and its
inverse is (I − S)−1 =

∑∞
k=0 S

k.

Similar to the analysis for the counting Laplacian we find:

Corollary 28. The random-walk Laplacian of a digraph G is poly-conditioned if
and only if for all pairs of non-sink vertices (i, j) ∈ V 2 the expected number of visits
to j of a random walk from i are polynomially bounded.

In particular, the random-walk Laplacian for a DAG is always poly-conditioned.
However, the inverse polynomial accuracy of Ta-Shma’s procedure for matrix inver-
sion becomes a problem here because the expected number of visits can be negligible
as in figure 3.1.

Example 29. See figure 3.3 for a DAG where the number of paths is exponential
in the number of nodes. The counting Laplacian of the graph is thus not poly-
conditioned. But the random walk Laplacian easily decides connectivity for this
graph because the expected number of visits to any node are either 0 or greater
or equal to 1/2. Inverse polynomial accuracy for approximating the entries is thus
sufficient.

3.3. OPEN QUESTIONS 27

3.3 Open Questions

We observe two open questions for further research.

1. Can we generalize our approach with the counting Laplacian to decide STCON

on reach-few graphs? A thorough spectral analysis of the counting Laplacian
might show that the subspaces corresponding to negligible singular values of
subgraphs with exponentially many paths can be disregarded if they are not
reachable from the frist node.

2. What is the relation of the singular values of different graph related matrices
and the spectral expansion? We see that the instances for which the random-
walk Laplacian is poly-conditioned are inherently different from the ones for
which the counting Laplacian is. A comparison of the singular values of dif-
ferent matrices and the spectral expansion might give closer insight into the
classes of digraphs for which connectivity can be decided in BQL and that
may be hard classicaly.

Bibliography

1. Aleliunas, R., Karp, R. M., Lipton, R. J., Lovasz, L. & Rackoff, C. Random
walks, universal traversal sequences, and the complexity of maze problems in
20th Annual Symposium on Foundations of Computer Science (1979), 218–
223.

2. Reingold, O. Undirected connectivity in log-space. J. ACM 55 (2008).

3. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences 4, 177–192 (1970).

4. Allender, E. & Lange, k.-j. RUSPACE(log n) ⊆ DSPACE(log2 n/ log log n).
Theory of Computing Systems 31 (1998).

5. Garvin, B., Stolee, D., Tewari, R. & Vinodchandran, N. ReachFewL = ReachUL.
Electronic Colloquium on Computational Complexity (ECCC) 18, 60 (2011).

6. Ta-Shma, A. Inverting Well Conditioned Matrices in Quantum Logspace in
Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Com-
puting (2013), 881–890.

7. Csanky, L. Fast Parallel Matrix Inversion Algorithms. SIAM Journal on Com-
puting 5, 618–623 (1976).

8. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum Algorithm for Linear Sys-
tems of Equations. Physical Review Letters 103 (2009).

9. Fefferman, B. & Remscrim, Z. Eliminating Intermediate Measurements in
Space-Bounded Quantum Computation in Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing (Association for Computing
Machinery, Virtual, Italy, 2021), 1343–1356.

10. Melkebeek, D. v. & Watson, T. Time-Space Efficient Simulations of Quantum
Computations. Theory of Computing 8, 1–51 (2012).

28

11. Cook, S. A. A taxonomy of problems with fast parallel algorithms. Information
and Control 64. International Conference on Foundations of Computation
Theory, 2–22 (1985).

12. Levin, D. A., Peres, Y. & Wilmer, E. L. Markov chains and mixing times
(American Mathematical Society, 2006).

13. Chung, F. R. K. Spectral Graph Theory (American Mathematical Society,
1997).

14. Reingold, O., Trevisan, L. & Vadhan, S. Pseudorandom Walks on Regular
Digraphs and the RL vs. L Problem in Proceedings of the Thirty-Eighth Annual
ACM Symposium on Theory of Computing (2006), 457–466.

15. Lange, k.-j. An unambiguous class possessing a complete set in (1997), 339–
350.

16. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Infor-
mation (Cambridge University Press, 2000).

17. Poon, C. On the Complexity of the st-Connectivity Problem PhD thesis (Uni-
versity of Toronto, 1997).

18. Edmonds, J., Poon, C. K. & Achlioptas, D. Tight Lower Bounds for st-Connectivity
on the NNJAG Model. SIAM Journal on Computing 28, 2257–2284 (1999).

19. Furst, M., Saxe, J. B. & Sipser, M. Parity, circuits, and the polynomial-time
hierarchy in 22nd Annual Symposium on Foundations of Computer Science
(1981), 260–270.

20. Saks, M. & Zhou, S. BPHSPACE(S)⊆DSPACE(S3/2). Journal of Computer
and System Sciences 58, 376–403 (1999).

21. Lassaigne, R. & Rougemont, M. Logic and Complexity (2004).

22. Cook, S. A. & McKenzie, P. Problems complete for deterministic logarithmic
space. Journal of Algorithms 8, 385–394 (1987).

Appendix

A.1 Inclusions of Complexity Classes

Lemma A.1. NC0 ⊊ AC0.

Proof. The subset relation NCk ⊆ ACk is trivial for all k ∈ N since NCk-circuits
are just ACk-circuits with the additional restriction of bounded fanin 2.
The inequality for k = 0 holds since every output bit of an NC0-circuit-family of
constant depth d can depend on at most 2d input bits, i.e. constantly many, due to
the fanin 2 restriction. Thus, for example the language {x ∈ {0, 1}∗| xi = 1 ∀i} to
decide whether all input bits are 1 is not in NC0. However, it is obviously in AC0

using a single AND-gate with unbounded fanin.

Lemma A.2. AC0 ⊊ NC1.

Proof. The inclusion ACk ⊆ NCk+1 is true for all k ∈ N. Given an ACk-circuit
we can replace every occurence of AND- or OR-gates using O(nc) fanin by a binary
tree of O(log(n))-many AND- or OR-gates. Even if every gate is replaced in this
fashion, we obtain at most an O(log(n))-factor on the depth. The resulting circuit
is thus in NCk+1.
The inequality was proven in [19] by Furst, Saxe and Sipser. They showed that the
parity function ⊕ that maps every x ∈ {0, 1}n to ⊕(x1, ..., xn) = Σixi mod 2 is not
in AC0. However, it is simple to see that the parity function can be computed by
an NC1-circuit as a binary tree of many XOR-gates.

Lemma A.3. NC1 ⊆ L.

Proof. We find NCk ⊆ Lk for all k ∈ N∗. Given a language decided by some
NCk-circuit we can determine the value of any output bit of the circuit during
a depth-first search (DFS) exploration from it. During the DFS exploration we
always save the current path we are on as a boolean sequence of edge labels, all
past evaluations on the path and the node label we are currently at. This is possible

30

in space O(logk n) because of the bounded depth. Whenever it is possible to update
the evaluation of the currently visited node, because it is a leave or because all child
nodes are evaluated, we do so. This procedure allows us to eventually evaluate the
output bit.

Lemma A.4. L ⊆ RL ⊆ NL,BPL and BPL ⊆ BQL.

Proof. Clear from the definition.

Lemma A.5. NL ⊆ AC1.

Proof. We show that STCON is in AC1. For this, note that given two boolean
n× n matrices A and B, we can calculate in AC0 their boolean “product”

(AB)(i, j) :=
n∨

k=1

(A(i, k) ∧B(k, j)) .

This notion of a product obviously does not coincide with the usual boolean matrix
multiplication because we replaced boolean addition by a simple OR-gate.

Now suppose we are given the adjacency matrix A of some input graph G with
nodes s and t. Repeadetly squaring, in the sense we just defined, allows us to
calculate any power Ak for k ≤ n in AC1. Further, it is easy to see that Ak(s, t)

equals 1 if and only if there is a path of length k from s to t. Hence, returning
n∨

k=1

Ak(s, t) correctly decides STCON in AC1.

Lemma A.6. NL ⊆ DET.

Proof. As in [11] we reduce STCON to intDET. Let A be the adjacency matrix of
the input graph G with nodes 1, ..., n. Without loss of generality we assume the
diagonal entries of A to be zero, i.e. G has no self-loops. Note that then Ak(i, j)

equals the number of paths of length k from i to j. We now choose ε := 1
n
< ||A||−1

and consider the matrix M := I − εA. We find that it is invertible and

M−1 = (I − εA)−1 = I + εA+ (εA)2 + (εA)3 + ...

such that M−1(i, j) ̸= 0 if and only if there exists a path from i to j. In particular
we have M−1(1, n) ̸= 0 if and only if there exists a path from 1 to n. Using the
adjugate of M we can calculate M−1 = adj(M)

det(M)
and we find M−1(1, n) ̸= 0 if and

only if det
(
M[n|1]

)
̸= 0 if and only if det

(
(nI − A)[n|1]

)
̸= 0. Here M[n|1] refers to

the matrix that is obtained from M by cutting out row n and column 1. Thus we
can reduce STCON to determining the determinant of (nI − A)[n|1].

Lemma A.7. BPL ⊆ L3/2.

The result is due to Saks and Zhou [20].

Lemma A.8. BQL ⊆ DET.

The result is proven by Fefferman and Remscrim in [9].

Lemma A.9. AC1 ⊆ NC2.

Proof. Similar to AC0 ⊆ NC1.

Lemma A.10. DET ⊆ NC2.

The proof is due to Csanky [7]. A very accessible presentation can be found in
[21].

Lemma A.11. NC2 ⊆ L2.

Proof. Similar to NC1 ⊆ L.

A.2 Connectivity on directed trees

Lemma A.12. Let T be a directed tree with nodes s and t. There is a deterministic
logspace algorithm deciding if there is a path from s to t.

Proof. Note that given a rooted undirected tree, we can compute a DFS-exploration
in deterministic logspace since we do not need to keep track of the previously visited
nodes (cf. [22]). The basic idea of the algorithm is to first ignore all edge orientations
and consider the resulting undirected tree rooted at s and check whether s and t are
weakly connected using a DFS-exploration. If not, we already know there cannot
be a path between them. If yes, we consider every out-neighbour s′ of s and the
corresponding subtree T ′ rooted at s′ that we obtain by deleting the edge from s to
s′ in T . Clearly, there is a directed path from s to t in T if and only if there exists
some out-neighbour s′ such that there is a directed path from s′ to t in T ′. Further,
we know that if such s′ exists, it needs be on the path from s to t. Applying the
same procedure to T ′ gives the desired logspace algorithm by induction.

	Introduction
	Preliminaries
	The Computational Model
	Random Walks on Graphs
	The undirected case
	The directed case

	Unambiguity and Fewness

	HHL-algorithm
	Hamiltonian Simulation
	Quantum Phase Estimation
	The HHL-circuit
	The general non-hermitian case

	Connectivity in Quantum-Logspace
	The counting Laplacian
	The random-walk Laplacian
	Open Questions

	Bibliography
	Appendix
	Inclusions of Complexity Classes
	Connectivity on directed trees

